
Path To QA Experience

SEPTEMBER 13, 2015SEPTEMBER 14, 2015 ⁄ HARINIVAS GANAPATHY

Demystifying RIT Custom Function – Part 3:
Wrapping up for Deployment

In Part 1 (h�ps://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/)
we discussed how to set the requirements ready to build a Custom Function using Eclipse plugin
development framework. In Part 2
(h�ps://harinivasganapathy.wordpress.com/2015/09/10/demystifying-rit-custom-function-part-2-
pu�ing-the-gears-together/) we discussed the architecture of the Function class which is the
backbone of Custom Function and how to develop a Custom Function by extending the Custom
Function. We are also discussed the rules and considerations of creating a Custom Function java
class. In part 3 we will discuss about the requirements and steps to package Custom Function as
pluggable jar and deploying it in RIT.

Steps to deploy Custom Function

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/deployment-steps.png)

Create Extension Points

https://harinivasganapathy.wordpress.com/
https://harinivasganapathy.wordpress.com/2015/09/13/demystifying-rit-custom-function-part-3-wrapping-up-for-deployment/
https://harinivasganapathy.wordpress.com/author/hganapathy0823/
https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/
https://harinivasganapathy.wordpress.com/2015/09/10/demystifying-rit-custom-function-part-2-putting-the-gears-together/
https://harinivasganapathy.files.wordpress.com/2015/09/deployment-steps.png

In order to allow 3rd party Functions added to RIT, IBM has created an extension point by means of
‘com.ghc.ghTester.functions’. This extension point should be added to the extensions tab in our
project’s Manifest file.

1. Open plug-in’s manifest file by double clicking MANIFEST.MF

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/new_extionsions_tab.png)
2. In the opened editor select the Extensions tab and click Add.
3. Select com.ghc.ghTester.functions in the New Extension Dialog

4. Click Finish.
5. Extension point and Extension point element are added to the manifest.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/after-adding-extension.png)

https://harinivasganapathy.files.wordpress.com/2015/09/new_extionsions_tab.png
https://harinivasganapathy.files.wordpress.com/2015/09/after-adding-extension.png

Configure Extension Points

The Extension Point Element has series of fields profiled with default values. Update the values as
per the below as reference –

name: Name of the function like formatDate
displayName: User friendly, readable name that appears in Function menu inside Test function
editor. e.g) Format Date
syntax: The syntax of the Custom Function that gives an idea for the user. e.g)
formatDate(date, inputFormat [, outputFormat])
functionClass: The java class name that we developed in Part 2. Fully qualified name should be
mentioned.
minParameters: The minimum parameters needed to pass in the function.
maxParameters: The maximum parameters needed to pass in the function.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/extension-element-details.png)

Save the manifest file. Next step will fail if not saved before proceeding.

Adding External Jars

This step is optional. It is required if the java class developed in Part-2 uses additional external jars.
Follow these steps to those external jars to the plug-in jar we created above.

1. Add the Jar to the root of the plug-in project
2. Add the jar to the plug-ins project’s build path by –

1. Right-click the project and select Properties > Java Build Path > Libraries.
2. Click Add Jars and browse for the Jar just added under the plug-in project.
3. Close the properties dialog.

3. Open the plug-in’s manifest file for editing and select the Runtime tab.
4. In the Classpath section, click Add and select the Jar that was copied into the project.
5. Save the manifest file.

Generating Plug-in

In the previous steps we created a plugin. Now the plugin has to be packaged with the java class
developed in part 2. Follow the below steps to package the plugin and create a pluggable jar.

1. File > Export.
2. In the Export dialog, select Plug-in Development > Deployable plug-ins and fragments from the

list of exports.
3. Click Next to display the deployable plug-ins and fragment dialog.

https://harinivasganapathy.files.wordpress.com/2015/09/extension-element-details.png

4. In the Available Plug-ins and Fragments list, select the plug-in that you want to generate and
export.

5. Select the Directory option and enter a directory location where the plug-in jar will be generated.
6. Click Finish.
7. The output of this process is a directory named plug-ins and jar with the name and version inside

the plug-ins directory.

Deploying in RIT

This is the final step in developing and deploying Custom Function. Follow the below steps to make
the Custom Function available under the Functions sub menu inside RIT Tests.

1. Copy the generated plug-in Jar and paste it into the Functions folder under the projects root
folder.

2. In RIT select Tools > Reload Custom Functions so that all added Custom Functions as jar is
available in tests.

3. If needed Select Tools > View All Functions to verify that our function is loaded.

We are finally done. Now the Custom Function can be used like any other Function inside Function
action editor inside RIT.

Disclaimer: The information and Infographics produced here is based on years of experience in
RIT testing and understanding on foundational information provided in IBM Knowledge Center.
The source code re-produced here is taken from the original source and owner – IBM.

Posted in Rational Integration Testing, RIT ⁄Tagged Custom Function, RIT ⁄2 Comments

2 thoughts on “Demystifying RIT Custom Function – Part
3: Wrapping up for Deployment”

1. Pingback: Demystifying RIT Custom Function – Part 2: Pu�ing the gears together | Path To My
Experience

2.

rekha says:
June 13, 2017 at 5:08 pm
Hi,,
Thank you for sharing the detailed steps,
I tried the same,
I can see the function available in RIT/Allfunctions .
The issue is -when I Am calling the function from ECMA script – it is giving me error/exception
that incorrect arguments .
Canu you pls, get your code here where you r calling function.

REPLY

https://harinivasganapathy.wordpress.com/category/rational-integration-testing/
https://harinivasganapathy.wordpress.com/category/rit/
https://harinivasganapathy.wordpress.com/tag/custom-function/
https://harinivasganapathy.wordpress.com/tag/rit/
https://harinivasganapathy.wordpress.com/2015/09/10/demystifying-rit-custom-function-part-2-putting-the-gears-together/
https://harinivasganapathy.wordpress.com/2015/09/13/demystifying-rit-custom-function-part-3-wrapping-up-for-deployment/?replytocom=27#respond

Blog at WordPress.com.

https://wordpress.com/?ref=footer_blog

