
Path To QA Experience

SEPTEMBER 6, 2015SEPTEMBER 17, 2015 ⁄ HARINIVAS GANAPATHY

Demystifying RIT Custom Function – Part 1:
Gear up

I had a hard experience reading through the product documentation from IBM on creating Custom
Functions in Rational Integration Tester (RIT). After re-reading many times finally got hold of the
concept behind extending Functions in RIT. So just thought of sharing my learning in the hope that it
would make understanding the underlying concepts more easier than reading through the
documentation over and over again.

What is a Function?

Let us take a moment to understand the idea of Function and later dive more deep into creating one
our own that can be plugged into RIT. Generally a function is a reusable block of code that takes one
or more input (technically called parameters) from the test, performs some action (that is abstracted to
test designer) on the input data and provides an output that can be used any where within an RIT
test case later. RIT provides syntax and required parameters for using every function within its
function editor – both legacy and ECMAScript. RIT supports two types of Functions –

Built-in Functions – like – xpath, round, eq, gt, floor, mod, add, subtract – that are designed by
IBM and shipped with every instance of RIT Product.
Custom Functions – RIT User (technically test designer) created Functions that meets his / her
custom needs. RIT test designer creates his own for use in more than one place.

What is a Custom Function?

Before taking a detailed view of Functions let us review what is a Custom Function at an high
abstracted level. A Custom Function is a Function that is designed, implemented and used by RIT user
(tester or test designer) and not that provided by IBM by default. In addition to the built-in
Functions provided by RIT, it also provides capability to create additional Functions by test
designers to meet custom needs and testing requirements that can be reused across RIT tests &
projects within an organizations.

Function is actually a Class provided by IBM so that it can be extended to create Functions
tailored and customized for testers requirement. Hence the name – Custom Function. More about
this in Part 2

Steps to develop Custom Functions:

https://harinivasganapathy.wordpress.com/
https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/
https://harinivasganapathy.wordpress.com/author/hganapathy0823/

Like every other programming model, developing Custom Functions involves 3 steps with each steps
involving more additional steps.

1. Design & Develop
2. Configure
3. Integrate

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/process-ladder_2.png)

Step 1 – Design & Develop

First step is more critical and complex part as it covers the core purpose, design and implementation
of the Function. It involves 3 additional steps –

Step 1.1: Prepare yourself and complete initial setup.

Drafting a logical design of the function –

From test designer (end-user of the completed plugin) perspective – Function is a black box, because he
doesn’t need to know the Function’s Implementation – how it process the input to produce the
output. All a Function says is “Give me, so and so input and i will do some computation with the input
to convert it and give you a certain output.

https://harinivasganapathy.files.wordpress.com/2015/09/process-ladder_2.png

So from Function designer perspective he has to have answers to below questions to start creating a
Custom Function.

1. What’s the purpose of it?
2. What are the minimum and maximum parameters needed to perform its indented operation?
3. What are the Parameters?
4. What should be its output?

Once answers to these questions are collected, we then move into the tools / software requirements –

Step 1.2: Software Requirements

1. RIT installation
2. Eclipse installation – with PDE (Plugin Development Environment Support)

Step 2: Create Plugin Project in Eclipse

RIT is built on top of Java and Eclipse Platform. Hence it has ability to accept plugins developed &
packaged as eclipse plugins.

To create an Eclipse Plugin Project:

1. Start / Open Eclipse Project
2. Create an Eclipse Workspace
3. Select New > Project from the File menu. The New Project wizard is displayed.

https://harinivasganapathy.files.wordpress.com/2015/09/project_selection.png

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/project_selection.png)
4. Select Plug-in Development > Plug-in Project, then click Next.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/plugin_project-selection-
window.png)

5. When the Plugin-in project page is displayed enter a project name, then click Next.
6. Complete the Content Page as per the below information and Click ‘Finish’

Plug-in ID : Plugin ID is to help RIT differentiate among other plugins created by users.
Plug-in Version: Plugins can also have incremental features & bug fixes and each can have a
version.
Plug-in Name: A short user friendly name that describes the Function’s purpose.
Plug-in Vendor: Name of the organization or department within organization that owns the plug-in.
Plug-in Options: Disable both options.
Rich Client
Application: Select ‘No’ for this options.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/plugin_prop_page.png)

Eclipse opens up the Manifest File associated with the Plug-in development.

https://harinivasganapathy.files.wordpress.com/2015/09/project_selection.png
https://harinivasganapathy.files.wordpress.com/2015/09/plugin_project-selection-window.png
https://harinivasganapathy.files.wordpress.com/2015/09/plugin_prop_page.png

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/manifest_file.png)

Step 3: Se�ing up the dependencies to RIT

Since we are developing an plug-in that will be used in RIT Environment, We have to let Eclipse
know that our plug-ins Target environment is RIT. So that all libraries needed for extending RIT is
available during plugin development. This is done by adding below RIT plug-ins as Target Platform
in Preferences.

1. Go to Window > Preferences > Plug-in Development > Target Platform

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/target_platform_page_1.png)
2. Click Add to an Target Definition to let eclipse know that the plug-in we are developing is for

RIT.
3. In the following Target Definition Dialog, select “Nothing: Start with an empty target Definition”

and Click “Next >“

https://harinivasganapathy.files.wordpress.com/2015/09/manifest_file.png
https://harinivasganapathy.files.wordpress.com/2015/09/target_platform_page_1.png

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/target_definition.png)
4. In the displayed Target Content page Give a meaningful name like RIT to signify the Target

definition is related to RIT environment and Click Add to proceed.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/targetcontent.png)
5. In the displayed Add Content page select Directory and click Next > to proceed.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/add-content.png)
6. In the Add Directory page click Browse and navigate to the IBM® Rational® Integration

Tester installation folder (C:\Program Files\IBM\IBMIMShared\Plugins, by default) and click
Next >.

https://harinivasganapathy.files.wordpress.com/2015/09/target_definition.png
https://harinivasganapathy.files.wordpress.com/2015/09/targetcontent.png
https://harinivasganapathy.files.wordpress.com/2015/09/add-content.png

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/add-directory.png)
7. The Target Content page will now show the location we added and plugin available in the

location. Click Finish to Close this page.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/target_content_loc.png)
8. All of the plug-ins in the Rational Integration Tester folder is read and listed in the Plug-ins tab of

the Target Platform preferences.
1. com.ghc.*
2. com.greenhat.*
3. com.ibm.greenhat.*
4. com.ibm.rational.rit.*

https://harinivasganapathy.files.wordpress.com/2015/09/add-directory.png
https://harinivasganapathy.files.wordpress.com/2015/09/target_content_loc.png

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/preference_target_platform.png)
9. Click OK to close the Preferences dialog.

Step 4: Se�ing the dependency in the manifest

1. From the Project explorer > double click META-INF > MANIFEST.MF

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/manifest_dependencies.png)
2. In the opened editor select the Dependencies tab and click Add next to Imported Packages.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/exported-packages.png)

https://harinivasganapathy.files.wordpress.com/2015/09/preference_target_platform.png
https://harinivasganapathy.files.wordpress.com/2015/09/manifest_dependencies.png
https://harinivasganapathy.files.wordpress.com/2015/09/exported-packages.png

3. In the displayed The Package Selection dialog filter using *.expressions wildcard and select
com.ghc.ghTester.expressions and click Ok.

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/after_target_addition.png)

(h�ps://harinivasganapathy.files.wordpress.com/2015/09/gh_target_adding.png)
4. Save the Manifest file

Ok we have got all our initial setup ready. This concludes our first part of the journey together.
Follow me into the next part of the trail. On our way we’ll understand the foundational design of
Function Class and implementation details of our Custom Function.

Continue to Part 2
(https://harinivasganapathy.wordpress.com/2015/09/10/demyst
ifying-rit-custom-function-part-2-putting-the-gears-together/)

Happy Reading!

Posted in Rational Integration Testing, RIT ⁄Tagged Custom Functions, RIT ⁄2 Comments

https://harinivasganapathy.files.wordpress.com/2015/09/after_target_addition.png
https://harinivasganapathy.files.wordpress.com/2015/09/gh_target_adding.png
https://harinivasganapathy.wordpress.com/2015/09/10/demystifying-rit-custom-function-part-2-putting-the-gears-together/
https://harinivasganapathy.wordpress.com/category/rational-integration-testing/
https://harinivasganapathy.wordpress.com/category/rit/
https://harinivasganapathy.wordpress.com/tag/custom-functions/
https://harinivasganapathy.wordpress.com/tag/rit/

2 thoughts on “Demystifying RIT Custom Function – Part
1: Gear up”

1. Pingback: Demystifying RIT Custom Function – Part 3: Wrapping up for Deployment | Path To
My Experience

2.

Pingback: Rational integration tester – A Visual Scripting Experience | Path To My Experience

Create a free website or blog at WordPress.com.

https://harinivasganapathy.wordpress.com/2015/09/13/demystifying-rit-custom-function-part-3-wrapping-up-for-deployment/
https://harinivasganapathy.wordpress.com/2016/04/24/rational-integration-tester-a-visual-scripting-experience/
https://wordpress.com/?ref=footer_website

