Path To QA Experience

RIT

MAY 12, 2016JUNE 1, 2016 /HARINIVAS GANAPATHY

RIT Reporting_ Using Excel Custom Functions

This post is a tutorial providing a comprehensive method to create and update test results to the
excel workbook using the Custom Functions available in RIT-OpenFramework. This post can also
be used as a tutorial for Custom Functions available in GitHub-@harinivas-ganapathy
(https://github.com/harinivas-ganapathy/RIT-OpenFramework/). Here we would see how to use
WriteToExcel function update Test data sheet with test status and also we would use the

examples, project setup to re-execute only failed tests and update their results. We do this in
automation fashion.

For demonstrating the concept and implemention we'll use the ConvertTemp web service available
from http://www.webservicex.net (http:// http://www.webservicex.net)

Pre-Requisites —

https://harinivasganapathy.wordpress.com/
https://harinivasganapathy.wordpress.com/2016/05/12/rit-reporting-using-excel-custom-functions/
https://harinivasganapathy.wordpress.com/2016/05/12/rit-reporting-using-excel-custom-functions/
https://harinivasganapathy.wordpress.com/author/hganapathy0823/
https://harinivasganapathy.wordpress.com/2016/05/12/rit-reporting-using-excel-custom-functions/
https://github.com/harinivas-ganapathy/RIT-OpenFramework/
http://%20http//www.webservicex.net

(1) Rational Integration Tester (Henceforth will be referenced as RIT)

(2) Internet access to open ConvertTemp WSDL available from
http://www.webservicex.net/ConvertTemperature.asmx
(http://www.webservicex.net/ConvertTemperature.asmx)

(3) Download ExcelFunction_<version_number>.jar from the GitHub repository —
https://github.com/harinivas-ganapathy/RIT-OpenFramework.git (https:/github.com/harinivas-

(4) Sample Excel File with Test cases for the ConvertTemp operation. Is also available from the
GitHub repository —

https://github.com/harinivas-ganapathy/RIT-
OpenFramework/blob/master/Examples/ConvertTemp_TestCases_V1.00.xIsx (http://
https://github.com/harinivas-ganapathy/RIT-
OpenFramework/blob/master/Examples/ConvertTemp_TestCases_V1.00.xIsx),

Getting Started —

RIT Installation

First we would need RIT installation to proceed further. RIT provides a free Starter Edition for all
learning purpose and acustom with the application. It can be download from IBM’s Continous
Testing Page —

Mac Version —
https://developer.ibm.com/testing/resources/downloading-rational-integration-tester-starter-
edition-for-mac-64-bit/ (http:// https://developer.ibm.com/testing/resources/downloading-
rational-integration-tester-starter-edition-for-mac-64-bit/)

Windows Version -
https://developer.ibm.com/testing/resources/rational-integration-tester-starter-edition-
download/ (http:// https://developer.ibm.com/testing/resources/rational-integration-tester-starter-
edition-download/)

There is not much of installation procedure for the RIT Starter Edition (RIT SE). Just extract the
downloaded zip or gzip archive. And double clicking the IntegrationTester.app in Mac brings up
the RIT - Starter Edition Splash screen —

http://www.webservicex.net/ConvertTemperature.asmx
https://github.com/harinivas-ganapathy/RIT-OpenFramework.git
http://%20https//github.com/harinivas-ganapathy/RIT-OpenFramework/blob/master/Examples/ConvertTemp_TestCases_V1.00.xlsx
http://%20https//developer.ibm.com/testing/resources/downloading-rational-integration-tester-starter-edition-for-mac-64-bit/
http://%20https//developer.ibm.com/testing/resources/rational-integration-tester-starter-edition-download/

Rational Integration Tester —
Starter Edition '

Licensed Materials - Property of |1BM Corp. & IBM Corporation and otheris) 2002, 2016. IBM, the I1BM logo and Rational are trademarks
of IBM Corp. in the United States, other countries and regions or both. Built on Eclipse logo is a frademark of Eclipse Foundation, Inc.
Java and all Java-based frademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates. Other company,
product or service names may be trademarks or service marks of others.

| java
Version 9.0.0.0 CEEATRIE
(https://harinivasganapathy.files.wordpress.com/2016/05/rit-se-splash-screen_full.png)

Later it would show Welcome window where we will create a new RIT Project

Step 1: Select Create Project from the Welcome Screen

https://harinivasganapathy.files.wordpress.com/2016/05/rit-se-splash-screen_full.png

Welcome to IEM Rational Integration Tester Starter Edition 9.0.0.0a

Select an item from the lists below

|Z| Create Project
iE Clone Project

Open existing project...

*¥ Browse...

OK Exit

On the displayed Create New Project screen

o Give a name for the project
o Specify a location for the project
o Click Finish

https://harinivasganapathy.files.wordpress.com/2016/05/1462796618_full.png

Mew IBM Rational Integration Tester project details

Enter your details to create a new IBEM Rational Integration Tester project on your local machine @

Project Name

Chwner
Comments

|Et:-n1.fer‘cTemp

Iharinivas

Project created on May 9, 2016

Project Directory

Directory |/Users/harinivas/ConvertTemp

Browse...

Cancel

ack Next == Finish

[==]

Step 2: Switch to the Architecture School selecting it from the Tool bar on the top

i %) Home

#, Architecture School

@ Recording Studio gy Test Factory [Test Lab

Ensure you're on the Logical View Tab of Architecture School

@ Logical View ﬂ Physical View “% Synchronization | &s Topology Discovery ﬁ s5chema Library

https://harinivasganapathy.files.wordpress.com/2016/05/1462796700_full.png
https://harinivasganapathy.files.wordpress.com/2016/05/1462796903_full.png
https://harinivasganapathy.files.wordpress.com/2016/05/1462796935_full.png

Step 3: Add the ConvertTemp WSDL by selecting wsdl from the Web drop down menu select

Logical View

M General -~ TR IMs - | @ Y - (R ® S QAW ek

f HTTP Connection
{-} Swagger Definition
® wWsDL

Step 4: From the “Create a New Synchronization Resource” — click “New...” to add ConverTemp
Wsdl to the project

Specify the location of the resource. You can either enter a URI manually, or use the Browse button to find a resource
on the local file system.

Location http:/ /www.webservicex.net/ConvertTemperature.asmx?wsdl Browse...
Identity |No Resource Selected Browse... Clear
{7 oK Cancel

— 1o —r—r=

https://harinivasganapathy.files.wordpress.com/2016/05/1462797168_full.png
https://harinivasganapathy.files.wordpress.com/2016/05/1462797980_full.png

| Synchronization Source

| Configure the connection details to your Synchronization Source

| Type [WSDL -

Configuration

MNew... ConvertTemperature

Add...

Remaowve

Configuration

Current Location vicex.net/ConverfTemperature.asmxwsdl Change... Analyze...

Environment

Choose existing or enter unigue name |SIT -

[] Show advanced options

Cancel << Back Next > > Finish

Step 5: Click ‘OK’

Step 6: Give a name for environment — like — SIT, UAT, ProdFIX.
Step 7: Click Next on the “Create a New Synchronization Resource”
Step 8: On the Generate Assets for Operations page — Click Next
Step 9: Click finish on the Summary Page

https://harinivasganapathy.files.wordpress.com/2016/05/1462797798_full.png

Generate Assets for Operations

Choose which operations you wish to generate tests and stubs for. You can use the default
asset name or specify your own name.

Create Tests L] Create Stubs
7 ¥ ConvertTemperature
ConvertTemp [ConvertTemperatureSoap ConvertTemp [Co... [||ConvertTemp [Co...
ConvertTemp [ConvertTemperatureHttpd [»||ConvertTemp [Co... []|ConvertTemp [Co...
ConvertTemp [ConvertTemperatureHttpl [#||ConvertTemp [Co... [||ConvertTemp [Co...
Cancel << Back Mext == Einish

(https://harinivasganapathy.files.wordpress.com/2016/05/1462797992_full.png)

Service Component and operation would be created in the Logical View and synchronized in the
Synchronization view

https://harinivasganapathy.files.wordpress.com/2016/05/1462797992_full.png

ComvertTemperature

ConvertTemp E
[ConvertTemperatureHitpGet] — M

:_: ConvertTemperatureHttpPost

ConvertTemp E

[ConvertTemperatureHttpPost]

=

ConvertTemperaturesoap

=

ConvertTemperaturesoapl 2

ConvertTemp
[ConvertTemperatureSoap]

=

L=

ConvertTemperatureHttpGet

This completes project setup.

https://harinivasganapathy.files.wordpress.com/2016/05/1462798133_full.png

Loading the Custom Functions

From the the GitHub page download the ExcelFunctions<version>.jar and place it inside the
Functions folder of the Project Home Directory

Switch to RIT Window and select from the Menu bar — Tools -> Functions -> Reload Custom
Functions/Behavior

To Verity that that Custom Function is loaded select from the Menu bar — Tools -> Functions-
>View All Functions

View All Functions

This is a list of all functions loaded in IEM Rational Integration Tester. There are 43
functions in total, including custom functions.

Mame Description Syntax
T D 2 e
i 0in joini Delimitegr, eXpr, expr, ...) =l
le Assertion/Less than or equal le{expr.expr)
lookupExcelCol LookupExcelCol lookupExcelCol(filepath,sheet...
lookupTD Lookup Test Data lookupTD(dataSetPath,[keyCal...
It Assertion/Less than [t(expr,expr)
maod Maths /Modulo mod(expr.expr)
multiply Maths /Multiply multiplylexpr,expr)
ne Assertion/Not equal nelexpr.expr)
not Assertion/MNot notl expression)
null Null nulli}
or Assertion/Or ori expression, expression,) [
readFromExcel ReadFromExcel readFromExcel(FilePath,Sheet...
regex string/Regular expression regex(string, expr, [instance], ...
regexEscape string/Regular expression esc... [regexEscape(literal)
replaceTags Replace tag(s) replaceTags(value)
resetTags Reset tag(s) resetTags([tagNamePattern])
round Maths/Round round(expr(, decimal places]) |=
setTag Store a tag setTagitagName, value)
settlementDate Settlement Date settlementDate (“startDate”, ...
subtract Maths/Subtract subtractiexpr.expr)
validateX5D Validate against X5D validateX5D(xml, [schemaURL...
writeToExcel WriteToExcel writeToExcelifilepath,sheetna...
KMLdbQuery XML database query XMLdbQuery(connectionld, gu...
xpath XPath query xpathixml, xpath) -
) OK

https://harinivasganapathy.files.wordpress.com/2016/05/1462798558_full.png

Preparing the Test Cases and Test Data Source

After the RIT Project is setup, let’s ensure the test cases are documented. For demonstration I have
sample test cases available in a specific format.

Create a new folder “Test cases” under Project Home.
Download the sample workbook from my GitHub repository in the Test cases folder.

Test Details Test Data Test Baseline
Allow_Executio Actual
Test_ID Name Scenario _n? Condition Steps Temperature FromUnit ToUnit ConvertTempResult Value Result |Comments|
Send request with positive value
¢ Jon from Positive It 1) Temperature should be positive Integer " ‘:: 3:‘5I2°T” vr‘:
1|convertTemp_v_opy [Corversion from Fositive Integer ¥ 2) FromuUnit should be "degreeFahrenhelr” |E ore: than 37.3 for Temperature 37| degreeFahrenheit |degreeCelsius 37|
Farehniet to Positive Integer Celsius N . . and FromUnit as "degreeFahrenheit”
3) ToUnit should be “degreeCelsius » .
and ToUnit as "degreeCelsius”,
T — 1) Temperature should be positive Integer |- 'Eq:"“u""':“:"""”""““ |
2| convertTemp_v_az | 2T B e vte w?;g_us ¥ 2) FromuUnit should be "degreeFahrenheit” ‘:""Z"‘“"d i Eakranhair s 37| deg degreeCel 37
i i
= E 3) ToUnit should be "degreeCelsius™ TOMCIAR: &3 “degiree ahrenhek-an;
Tolnit as "degreeCelsius”.
itive value |
Conversion from negative Integer L) Temperature should be negative Integer f:::;::ue: ?;‘s:s:!ﬁ vaf:: r:ss
3|ConvertTemp_v_003 o oI v 2) FromUnit should be "degreeEahrenhelt” sl HIEMperatite: -37|degreeFahrenneit | degreeCelsius 37|
Farehniet to negative Integer Celsius 5. 5 and FromUnit as "degreeFahrenheit’
3) ToUnit should be “degreeCelsius’ b .
and ToUnit as “degreeCelsius
Send request with positive value
R 1) Temperature should be positive Double q: ;7”5':‘"' vl
4|convertTemp_v_ops | Cenversion from Positive Double v 2) FromuUnit should be "degreeFalinenhenrs |ETENeT than 37.5 for Temperature 70.87|degreeFahrenheit |degreeCelsius 70.87
Farehniet to Positive Double Celsius o) and FromUnit as "degreeFahrenheit™
3) TouUnit should be “degreeCelsius’ & =
and ToUnlt as “degreeCelsius”.
i o Py oubh 4 Temperatare should be positve Douple |57 FEAUESE Wih posidve value
5|CanvertTemp_v_005 Wz ostieboybe ¥ 2) FromuUnit should be "degreeFahrenhelrs |BTedter than O for Temperature and 70.87|degreeFahrenheit |degreecelsius 70.87

Farehniet to negative Double Celsius

3) ToUnit should be “degreeCelsius™

FromUnit as "degreeFahrenheit” and
ToUnit as “degreeCelsius”.

(https://harinivasganapathy.files.wordpress.com/2016/05/1463054935_full.png)

The test case workbook is organized in a way that —

1.
2.
. It has test execution control flag “Allow_Execution”. The idea of the flag to determine which
tests to execute in RIT from Excel instead of in RIT. This gives a flexibility to control test

It has Unique test ID

It has unique test name that can mapped to ALM.

execution even without opening RIT when run in Command line mode.

. It has standard test condition and test steps to describe the purpose of the test.
. Additionally it has the test Data section. The pupose of having test data part of test case is to

isolate automated test from manual test by feeding test data directly into RIT tests using
parameterization avoids manual test data setup in RIT tests.

execution with the baseline to determine if the test is Passed.

Note:

I have intentionally modified the value of ConvertTempResult for Tests 2, 4 & 6. So that we

could have both results (Passed & Failed) updated in the test sheet and will use it for
demonstrating other two functionality — ReadFromExcel & LookupExcelCol custom functions.

. It has baseline section that is referenced with in RIT to compare the values returned during

. It has a result section to write back test result back to this Excel after execution of each step. For
this purpose we will be using the ExcelFunctions available in GitHub RITOpenFramework.

https://harinivasganapathy.files.wordpress.com/2016/05/1463054935_full.png

Build Data source for parameterization

1. Create a new Excel data source by selecting and right click on the operation — ConvertTemp
[ConvertTemperatureSoap] -> New -> Tests Data -> Excel Data Source

Test Factory — B =
e -y -0-88 - BE 2[Ee
*> Logical

7 & ConvertTemperature
E ConvertTemp [ConvertTemperatureHttpGet]

ConvertTemp [ConvertTemperatureHttpPost]
CﬂmEnTEmp [‘Cﬂ it Tammaratiratnanl

New P = Folder
Expand Tests 3
Collapse Stubs 3
** Promote to root Test Data

Messages P

L Paste

Documentation k

= Refrash
Show Hidden

2. Give it name like Convert-Temp_Excel_DS

¥ Database Data Source
¥ Directory Data Source
¥4 File Data Source

%4 Excel Data Source

[Create a new Excel Data Source |

3. Double-Click the newly created Data Source to configure with the Excel workbook downloaded

from GitHub page.

4. Click Browse on the Data source Editor and navigate to the Test case workbook under the Test

case folder.
5. Specify the test sheet name as — “Valid”

6. Ensure “A row of the file contains column names” is checked.

7. Mention 1 in the “Rows to skep before column names”.

B ConvertyTemp-Excel_DS_Valid X q4 b
Excel Data Source

Import test data from an XLS formatted spreadsheet file. Values may be mapped to tags in run profiles. =

File Name %%PROJECT /ROOT_DIRECTORY%/TestCases/~5ConvertTemp_TestCases_V1.00.xlsx Browse... H Open... i

Workbook
Sheet name | Valid

Format Configuration
A row of the file contains column names

Rows to skip before column names |1
Rows to skip after column names 0

Treat empty strings as null
[[] Treat text as null

[] Treat text as empty string

Auto map new columns to tags at runtime

[] Loop Data

8. Click refresh to preview the data from the work book

Preview (max 25 rows)
Test_ID| Name [Scenario | Allow_Execution? Condition Steps Temperature FromUnit ToUnit ConvertTempResult Actual Value| Result Cnmmemsj
2 Convert... |Conversion f... Y 1) Temperature s... |Send request wit...[37 degreeFahrenheit |degreeCelsius 2.7777777777777715 -
3 Convert... |Conversion f...|Y 1) Temperature s... |Send request wit...|-37 degreeFahrenheit |degreeCelsius -38.333333333333343
4 |Convert... |Conversion f... |Y 1) Temperature s... |Send request wit...[70.87 |degreeFahrenheit |degreeCelsius 21.594444444444434
5 |Convert... |Conversion f...|Y 1) Temperature s... |Send request wit...|70.87 |degreeFahrenheit |degreeCelsius 21.594444444444434
6 |Convert... |Conversion f...|Y 1) Temperature s... [Send request wit...|-14.76 |degreeFahrenheit |degreeCelsius -25.97777777777776
7 Convert... |Conversion f...[Y 1) Temperature s... |Send request wit...|37 degreeCelsius degreeFahrenheit |2.222222222222217
8 Convert... [Conversion f... |Y 1) Temperature s... |Send request wit...|37 degreeCelsius degreeFahrenheit [2.222222222222217 o
Refresh | ‘ Copy column names to clipboard

Test Building in Test Factory

Create Test Cases in RIT

o Switch to Test Factory view in RIT

o Select and right click ConvertTemp [ConvertTemperatureSoap] operation from the Test Factory
explorer pane.

Test Factory — B H

S50 -+ - -88-BE F[S9
*¥ Logical
¢ ® ConvertTemperature

ConvertTemp [ConvertTemperatureHttpGet]
ConvertTemp [ConvertTemperatureHttpPost]

ConvertTemp [CommrTamnaraturainanl
New P > Folder
Expand Tests ¥ =4 Test using MEP
Collapse Stubs ¥| 2 Tests using MEP...
*> Promote to root TestData ¥ & Test suite
. Messages b
Copy
| L] Paste
Documentation P
2 Refresh
Show Hidden

(https://harinivasganapathy.files.wordpress.com/2016/05/1463056850_full.png)

o Name the test something like — ConvertTemp_Valid to denote this test handles all positive

conditions of the operation. Using this test we will demonstrate WriteToExcel Custom Function
behavior.

*¥ Logical
¢ ' ConvertTemperature
ConvertTemp [ConvertTemperatureHttpGet]
ConvertTemp [ConvertTemperatureHttpPost)
e ConvertTemp [ConvertTemperatureSoap)
§ 18 Tests - Test For Valid
%5 ConvertTemp_V
=# ConvertTemp_V-FAILED_TESTS .
¢ &) Test Data Test For
B CovertTemp-Excel_DS_Valid Invalid

Edit to Construct Test using Actions and Parameterization

o From the Excel Data Source Tab — after refreshing to preview the Data in the workbook sheet.
Click on “‘Copy Column names to clipboard” button.

o Open the Convertlemp_Valid by double clicking in under the Tests folder in Test Factory Pane.

https://harinivasganapathy.files.wordpress.com/2016/05/1463056850_full.png

o Open the Tag Editor and click on the Paste Icon to paste the Excel Column headers as Tags to

18 B X|

=HEICRE

Mame Description Default Value

| Actual_Value

1) Allow_Execution?

@ Comments

@ Condition

@) ConvertTempResult

@ FromUnit

@) ITR_Result

@ Mame

&) Result

@ Scenario

Q) Steps

@ Temp

@ Temperature

@) Test_ID

@) ToUnit

the test.

o Under the Steps tab, in the test editor, select the Test Steps section. And add Iterate Test Data

from ‘Flow’ Menu.

fSteps Properties | Documentation

@ | Messaging - | Flow - | General -

5_; ConvertTemperature /ConvertTemp [ConvertTemperatureSoap),
4 Initialize

- @,Test Steps

e ITJ lterate Test Data: over CovertTemp-Excel_DS_Valid

o Double Click Iterate Test Data action to configure it.

o Click ‘Browse’ to select the excel data source we create before.
Iterate Test Data

lterate over a test data set m

f{:unﬁg [Filter | Store |

Test data set | CovertTemp-Excel_D5_Valid Browse... Clear

GCroup data by column -

[terations

Pacing
[] Enable pacing

Pacing mode

Period (seconds)
Runtime Settings
Creates new test iteration

Continue on fail

[teration Timing
[] Limit the length of each iteration

Maximum iteration time in seconds

[_] Limit the length of the entire iterate action

Maximum total time in seconds

Ok Cancel

=ttt 1 N s L T R TR T R R IR

o Switch to the ‘Store” Tab and ensure all Excel Column Headers are mapped to the tags in the
Tag Store. There might be tags in Test that shows ‘No Mapping’. It is ok if there is no matching

columns in the Excel workbook. They might be added for other actions in the test.

[Config | Filter | Store |

Tag name Data
Condition & Condition
Result & Result
Comments & Comments
Scenario & Scenario
FromUnit & FromUnit
Temperature & Temperature
Name & Name
ConvertTempResult & ConvertTempResult
Steps &5 Steps
Test_ID &% Test_ID
Tolnit &5 ToUnit
Allow_Execution? & Allow_Execution?
ITR_Result B Mo mapping
Actual_Value B No mapping
Temp B MNo mapping

Purpose of this action is to iterate every row in the excel work book, pick up each test case per
iteration and perform test execution and validation steps.
Next add a decision action from the ‘Flow” menu.

9 l"..'.'l lterate Test Data: over CovertTemp-Excel_DS_Valid
e ﬁ?; Decision:eq(®*%Allow Execution?%,"Y")

- —
This action checks if a particular test is to be executed based on how the control flag —
Allow_Execution? is set in test data sheet.
Decision

Choose evaluation expressions to determine test execution flow. Use predefined ﬁ
functions, custom plug-ins and tagged data.

Enter a description of what the script is intended to do

Script Language: |Legacy |v| '‘OR' Expressions |:|\ Add H Delete H Test |

eq(%%Allow_Execution?%%,"Y")

In the true part we’ll add and configure the test action steps requried to trigger the test and
validate it.

In the false part we add a Warning Message that this is not marked for execution and so it is
skipped.

We add a Log action to output a message to the RIT console to display the Test name and
scenario for readability and identifying the message for each test.

Log

The log actions enables you to output messages to console and a logging file. ()

Role Info -

Output File [~]
File options
Output Message:

FENamess FHScenarlodss
B o T o o o o L a h

Dk Cancel

o In RIT we can capture the overall result of a test, but cannot capture a result of iteration. Hence
we create a Tag ITR_Result to set and use for this purpose.

o We begin our test implementation by setting the tag ITR_Result as “True’. We do this at the start
of every iteration so that result of previous iteration is not carried forward.

[2d* Function:Run “setTag(ITR_Result, true)”

o Then we add Send Request and Recieve Reply Step.
54 ConvertTemperature/ConvertTemp [ConvertTemperatureSoap]/ConvertTemp_V
1 Initialize
¢ ® Test Steps
? Q‘J Iterate Test Data: over CovertTemp-Excel_DS_Valid
9 }3 Decision:eq(¥%%Allow_Execution?#%,"Y")
¢ ¢ True
Q Log:%%Namedi %¥%Scenario’s
(=4* Function:Run “setTag(ITR_Result, true)”
& Send Request:"Text" on resource “/ConvertTemperature.asmx" using schema "Text" via “ConvertTemperatureSoap”
¢ S Receive Reply:"Text" using schema "Text"

We add the below XML to the Request

(¢]

<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soap:Body>

<ConvertTemp xmlns="http://www.webserviceX.NET/">
<Temperature>¥%%TemperatureX%%</Temperature>
<FromUnit>%%FromUnit%%</FromUnit>
<ToUnit>%%ToUnit%%</ToUnit>

</ConvertTemp>

</soap:Body>

</soap:Envelope>

o We add the below XML to the Response

<?xml

xmlns:
xmlns:
xmlns:
:Body>

<soap

version="1.0" encoding="utf-8"?><soap:Envelope
soap="http://schemas.xmlsoap.org/soap/envelope/"
xsd="http://www.w3.0rg/2001/XMLSchema"
xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<ConvertTempResponse xmlns="http://www.webserviceX.NET/
<ConvertTempResult>%%ConvertTempResult%%</ConvertTempResult
</ConvertTempResponse>

</soap:Body>

</soap:Envelope>

o We validate if ConvertTempResult is as per expectation by comparing it with the
%%ConvertTempResult%% tag that comes from the Excel Data sheet. This is done by
mentioning this Tag in the validate tab of the field editor for ‘Equality’.

o Additionally configure the response to store the result of ConvertTempResult field into Tag

Receive Reply

Receive and validate a response to the request you have sent. S

(Config [Filter | Assert | Store

Reply to ‘Send Request 1 w | Formatter | %, HTTP Message ‘v|
Reply Header &
L~ @ 43| @ Message‘rvpe 2B B ﬁﬁ

Message i® value @@ store i@

e _lﬁ Text (Message) Validate Message Children | [v]

o ‘& text (String) {XML} <soap:Envelope> <soap:Bg |
¢ 3 soap:Envelope (Element) Validate Element Children ||
% xmins:soap (Attribute) http://schemas.xmlsoap.or |
“ xmins:xsd (Attribute) http:/ /www.w3.0rg/2001/) [¥ |
“& xmins:xsi (Attribute) http: / /www.w3.0rg/2001/ ||
% |3 soap:Body (Element) Validate Element Children |
T % ConvertTempResponse (ElemValidate Element Children |
% xmins (Attribute) http: / /www.webserviceX.Ni [v] L]
¢ [3 ConvertTempResuilt (ElemValidate Element Children |
%xConvertTempResultiss Actual Value vl
Timeout (ms) 5000 Tolerance (ms) 5000

%% Actual_Value%% :
o If the Response validation fails the test stops and we won’t be able to access or display or
validate the %%ITR_Result%%. So add a failure path for the response.

& Send Request:"Text" on resource "jConvertTemperature.asmx” using schema “Text" via "ConvertTemperatureSoap"
7~ 3 Receive Reply:- “Text" using schema “Text"

?

& Ssubscriber Error
& validation Failure

o Under ‘Validation Failure’” add a Function action to set the %%ITR_Result%% as false.
o Add another function action to write that result to Excel worksheet.

writeToExcel ("%%PROJECT/ROOT_DIRECTORY%%/TestCases/ConvertTemp TestCases V1.00.
x1sx",Valid,regex(add(%%TEST/ITERATION/NUMBER%%,1),"\\d+",1),L,FAILED)

First parameter —
%%PROJECT/ROOT_DIRECTORY %%/TestCases/ConvertTemp_TestCases_V1.00.xIsx — points
to the Excel workbook file.

Second parameter — Valid — refers to the sheet in excel workbook

Third parameter — regex(add(% %TEST/ITERATION/NUMBER%%,1),”\ \d+",1) — Retrieves the
Iteration number that is used to refer as the row number.

Fourth parameter — L — refers to the Column ‘Result’ in the Excel Workbook.

Fifth parameter — FAILED - refers to the value written to the cell identified by third and
fourth parameter.

o Same way we add Function action to include the Custom Function as below —

writeToExcel("%%PROJECT/ROOT_DIRECTORY%%/TestCases/ConvertTemp TestCases V1.00.
x1sx",Valid,regex(add(%%TEST/ITERATION/NUMBER%%,1), "\\d+",1),K,%%Actual Value%%

)

The only difference from earlier function is the fourth and fifth parameter
Fourth parameter — L — refers to the Column “Actual_Value’ in the Excel Workbook.

Fifth parameter — %%Actual_Value% % — refers to the value written to the cell identified by
third and fourth parameter. Note that %%Actual_Value%% comes from the actual response
received.

o Add another third function action to write the timestamp into the Comments column in the Test
Data sheet.

writeToExcel ("%%PROJECT/ROOT_DIRECTORY%%/TestCases/ConvertTemp TestCases V1.00.
x1sx",Valid,regex(add(%%TEST/ITERATION/NUMBER%%,1), "\\d+",1),M, %%SYSTEM/CURRENT _
DATE_TIME%%)

The only difference from earlier function is the fourth and fifth parameter
Fourth parameter — M — refers to the Column “Comments’ in the Excel Workbook.

Fifth parameter -%%SYSTEM/CURRENT_DATE_TIME%% — refers to the timestamp value
written to the cell identified by third and fourth parameter.

o As a last step inside the Failure path of the Response add a Fail action, without which even if
the validation fails and Validation Failure Path is executed overall Test Result will be always be

PASSED.

o What follows next is the subsequent steps to Receive Reply. Which means actions to be
performed if the Receive Reply validation is successful.
o We add a decision to check if the ITR_Result is still true, and if true we add 3 functions actions

¢ & validation Failure
[=2* Function:Run "setTag(ITR_Result,false)”

l22* Function:Run "writeToExcel(
[a3* Function:Run “writeToExcel(

X Fail:-NO MESSAGE DEFINED-

in the order
1. Write the status as Passed to Column K in the Test Data sheet
2. Write the Actual Value from the response in Column L
3. Timestamp value in Column M

True

[+3" Function:Run “write ToExcel(%%PROJECT /ROOT_DIRECTORY:%/ TestCases /ConvertTemp_TestCases_V1.00.xlsx" Valid,regexiad d (X%TEST /ITERATION/NUMBERS, 1),"\\d +", 1), LLPASSED)"
estCases/ConvertTemp_TestCases_V1.00.xlsx", Valid, regex(addixXTEST /ITERATION/NUMBER, 1),
[Function: Run “write ToE xcel(%%PROJECT /ROOT_DIRECTORY#/ TestCases /ConvertTemp_TestCases_V1.00.xlsx" Valid,regexiad di%%TEST /ITERATION/NUMBER%, 1),"\

[l Function:Run “write ToExcel(%%PROJECT /ROOT_DIRECTORYH%/T

o False part can be left blank as the possible actions that can be included here are already

included within Validation Failure path.

Verifying the Results

Now that test is executed, open the excel workbook from the below location —

%%PROJECT/ROOT_DIRECTORY%%/TestCases/ConvertTemp TestCases V1.00.x1sx

Actual_valuez‘ Resullj

Name

Te;tE E

1|ConvertTernp_V_001

2|ConvertTemp_V_002|

Scenario

Conversion from Positive Integer
Farehniet to Positive Integer Celsius

Conversion from Paositive Integer
Farehniet to negative Integer Celsius

Allow_Executio
n? lz‘ ConvertTempRi

Updated by yrrr7zrrriris
Test

3|ConvertTemp_V_003/

4|ConvertTemp_V_004

5|ConvertTemp_V_005

Conversion from negative Integer
Farehniet to negative Integer Celsiu

Conversion from Positive Double
Farehniet to Positive Double Celsius

Conversion from Positive Double
Farehniet to negative Double Celsius

6|ConvertTemp_V_006

7|ConvertTemp_V_007

Canversion from negative Double
Farehniet to negative Double Celsius

Conversion from Positive Integer
Celsius to Positive Integer Farehniet

2.7777777777777715
I 4
Y 2.77777777777177715
2.777777TTT7777715
v
FAILED
-38,333333333333343
Tests
-38.333333333333343
v ¥
Y 21.594444444444434
21.594444444444434
d v
Y 21.594444444444434
21,594444444444434
v v
Y -25.97777777777776
-25.977777777177776
r r
Y 98.600000000000009
98.600000000000009

oo
S

oo
S

PASSED

FAILED

PASSED

FAILED

PASSED

FAILED

PASSED

PROJECT /ROOT_DIRECTORY 2%/
PROJECT /ROOT_DIRECTORY 2/
[#4* Function:Run “write ToExcel("%%PROJECT /ROOT_DIRECTOR Y%/

Comments

14-May-2016 08:52:07

14-May-2016 08:52:07

14-May-2016 08:52:08

14-May-2016 08:52:08

14-Mav-2016 08;52:08

14-May-2016 08:52:08

14-May-2016 08:52:08

Reading value from Excel Workbook

Wd+%, 1)K %%Actual_Valuesx)" (2)
d+",1),M%%SYSTEM/CURRENT_DATE,

This far we used the WriteToExcel function available from RIT-OpenFramework (available in
GitHub) to update status of every test to a excel workbook. We will continue to use other two
functions — LookupExcelCol() and ReadFromExcel() to re-execute only failed tests from first run.

Remember that we purposefully had a wrong value in the ConvertTempResult column on the test
data sheet so that we see how PASSED & FAILED and written back to the excel worksheet.

we will now demonstrate the use of LookupExcelCol() to check if a specific test is failed by
checking the Result column having FAILED text. Now the tests that had intentionally left
wrong ConvertTempResult is corrected. If Result column has FAILED text we will attempt to re-
executed the test.

Test Data | Test Baseline
Allow_Executio N
, Tt Name | Scenario - w7 |v|Temperaty_| FromUnit ToUnit | (ConvertTempRes Actual_Value/ | Resul Comments. =
4
Conversion from Positive It y . -
1|ConvertTemp_V_001 Fara it to Paitive Integer Celsuls ¥ 37| degreeFahrenheit | degreeCelsius LITTITITITINITING | RTTTTTTITTITINNS PASSED 15-May-2016 12:38:00
3
Old wrong Value
ion fr ive In D o o b o e———"
2|converTemp_y_ooz| Conversion frem Positive Integer ¥ 37|degreerin, 2. 777777 TIT7777 277919 | FAILED 15-May-2016 12:38.00
="="""| Farehniet to negative Integer Calsius.
4
3|converttem . Vot SR e o Ve Y -37degreer ‘ J 38 23| passeD 15-May-2016 12:38:00
Farehniet to negative Integer Celsius
Old w g Valu
\355 111141 14 11
Conversion from Pesitive Doul ble:
4|convertTemp ¥ 004 etive Double Calsius ¥ 70.87|dew 7 2 21 FAILED 15-May-2016 12:38:00
Conwersion from Positive Double
5|conwvertTemn_Y_005{ o egarive Double Calsius ¥ 70,87 dea 21 PASSED 15-May-2016 12:38:01
Qld wrong Value
2587777777777
Conversion from negative Double
nnnnnnnnn el et fo negative Doubl Gelsivs 14.76| degreerahrenhel E -25.97777777737796 | FAILED 15-May-2016 12:38:01

Building the Test

Switch to the Test Factory

In the Test Factory Pane -Right click the test — ‘ConvertTemp_V’ and click ‘Copy’
Right click the test folder and click ‘Paste’

Select the newly created test — “ConvertTemp_V (2)’ and right click to select ‘Rename
Give it a value — ‘ConvertTemp_V-FAILED_TESTS

The only change we will make it this test is modify the Design logic which checks if
%%Allow_Execution?%% is “Y”.

o Double click the decision to edit it.

o Add one more test condition by click the ‘Add” button

o Add the below condition to it —

7

O O O O O O

‘eq(readFromExcel(%%PROJECT/ROOT_DIRECTORY %%/TestCases/ConvertTemp_TestCases_V1.
00.x1sx, Valid,regex(add (% %TEST/ITERATION/NUMBER%%,1),”\ \d+”,1),L), FAILED)"

In the above condition we are using the Excel function readFromExcel() to read the cell content
marked by row and column.

This function takes 4 parameters —

First Parameter —

%%PROJECT/ROOT_DIRECTORY%%/TestCases/ConvertTemp_TestCases_V1.00.xIsx
Identifies the Excel file to read from.

Second Parameter — Valid identifies the sheet within the excel workbook.
Third parameter — regex(add(%%TEST/ITERATION/NUMBER%%,1) identifies the Row
Fourth parameter — L — identifies the Col

This Function call returns a value and we check this returned value against the Text — FAILED. This
ensures only test which are allowed for execution and failed are executed.

Executing the Test

o Save the test.
o Run the test by selecting ‘Run’ button from the tool bar or press F5.

From the console log we could see that only tests that failed was executed. Not all tests. Tests that
were not executed just displayed a message — [Warning] Test Not Executed

<terminated> ConvertTemperature/ConvertTemp [ConvertTemperatureSoap]/ConvertTemp_V-FAILED_TESTS
[85/16/2016, 6:13:24.051 AM] Initializing...
[85/16/2016, 6:13:24.054 AM] Using environment: SIT
[05/16/2016, 6:13:24.054 AM] - - - - Starting main steps - = = =
[05/16/2016, 6:13:24.055 AM] Test Mo: 1
[warning] Test Not Executed
[05/16/2016, 6:13:24.077 AM] Test No: 2
[85/16/2016, 6:13:24.103 AM] Send Request:"Text" on resource “/ConvertTemperature.asmx" using schema "Text" via "ConvertTemperatureSoap" - Send message
[05/16/2016, 6:13:24.338 AM] Receive Reply:"Text" using schema "Text" - Message validation passed
[85/16/2016, 6:13:24.338 AM] 2.7777777777777715
[05/16/2016, 6:13:24.572 AM] Test No: 3

[05/16/2016, 6:13:24.590 AM] Test No: 4

[05/16/2016, 6:13:24.614 AM] Send Request:"Text" on resource “/ConvertTemperature.asmx” using schema "Text" via "ConvertTemperatureSoap" - Send message
[05/16/2016, 6:13:24.694 AM] Receive Reply:"Text" using schema "Text" - Message validation passed

[05/16/2016, 6:13:24.694 AM] 21.594444444444434

[85/16/2016, 6:13:24.921 AM] Test Mo: 5

[05/16/2016, 6:13:24.937 AM] Test Mo: 6

[05/16/2016, 6:13:24.960 AM] Send Request:"Text" on resource “/ConvertTemperature.asmx" using schema "Text" via "ConvertTemperatureSoap" - Send message
[85/16/2016, 6:13:25.939 AM] Receive Reply:"Text" using schema "Text" - Message validation passed

[05/16/2016, 6:13:25.039 AM] -25.97777777777776

[05/16/2016, 6:13:25.275 AM] Test No: 7

[05/16/2016, 6:13:25.294 AM] Test No: 8

[05/16/2016, 6:13:25.318 AM] Test Mo: 9

[05/16/2016, 6:13:25.344 AM] Test No: 18

[05/16/2016, 6:13:25.371 AM] Test Mo: 11

[05/16/2016, 6:13:25.396 AM] Test No: 12

[85/16/2016, 6:13:25.422 MM

Opening the excel sheet we could see that FAILED tests were updated as PASSED.

Test Data | Test Baseline

Allow_Executio
l'a(_ﬂ Name j Scenario |L _n? lﬂTlmpnrltlﬂ Flnml.lrll1' ToUnit | _ mﬂumplnﬂ J\l:ﬂ.lll_llahl!j Hlsurj Comments [~]
¥
Conversion from Positive Integer . y
1|ConvertTemp_V_001| Farehniet to Positive Integer Celsius ¥ 37| deg Test Status updated 7715 | 2.7777777777777715 | PASSED 15-May-2016 12:38.00
to Passed

Conversion from Positive Integer
Farehniet to negative Integer Celsius

2|ConvertTemp_v_002 ¥ 37|deg it | degreeCelsius ZIITIITIITIINIT | 239999997 PASSED 16-May-2016 06:13:24

Conversion from negative Integer ¥ 37|deg degreeCelsius -38 La 33332~ <3| PASSED 15-May-2016 12:38:00

3|ConvertTemp_V_003|
P93 carehriet to negative Integer Celsius

4| ConvertTemp_v_oos| Eomienon feofm Posithe Dowve ¥ 70.87|degreeFahrenheit | degreeCels: 21.594444444444434 | PASSED 16-May-2016 06:13:24
Farehniet to Positive Double Celsius

Conversion from Positive Double
Temp_V. 7 Js [1 38
S|Convertemp_V_00S| L o negative Double Celsius ¥ 70.87|deg elsius 21! 21 ASSED 15-May-2016 12:38:01

Conversion from negative Double
Farehniet to negative Double Celsius

6| ConvertTemp_V_006| Y 14. it | degr 25.97777777777776 | -25.97777777777776 | PASSED 16-May-2016 06:13:25

This concludes our tutorial on using Excel Function to update test results to Excel and Read back
from it. The same concept can be used to write values to a separate sheet should we have to
maintain a separate report of execution status. Also remember to log bugs or feature / enhancement
request on Excel Custom Functions on GitHub Issues page (https://github.com/harinivas-
ganapathy/RIT-OpenFramework/issues).

=

APRIL 24, 2016 MAY 3,- 201-6/ HARINIVAS GANAPATHY

Rational integration tester — A Guide to Visual
Scripting Experience

The idea of this is post is help any beginners with little programming experience, who start with
RIT a fresh, to have a feel of what RIT offers for Scripting to automate Web Services Testing. This
post also portraits RIT usage in a Developers perspective. The post also highlights advanced RIT
features, usage with examples for other RIT users who have medium to advanced exposures.

When you have started with IBM’s Rational Integration Tester product or referred the product
documentation several times while working on a project, you would have come across this
statement, or told by a tutor or had a feeling that

“RIT is a script free automation tool”

This statement is both true and false. How? is the entire idea of the discussion.RIT offers two kinds
of experience

o Basic Beginner Mode

https://github.com/harinivas-ganapathy/RIT-OpenFramework/issues
https://harinivasganapathy.wordpress.com/2016/04/24/rational-integration-tester-a-visual-scripting-experience-2/
https://harinivasganapathy.wordpress.com/2016/04/24/rational-integration-tester-a-visual-scripting-experience-2/
https://harinivasganapathy.wordpress.com/author/hganapathy0823/
https://harinivasganapathy.wordpress.com/2016/04/24/rational-integration-tester-a-visual-scripting-experience-2/

o Core Pro Mode

Beginner mode is for novice users who has just started their journey. For such users RIT offers a
Visual Basic kind of experience where there are visual graphical elements for almost every primary
fundamental programming constructs. Like Controls in VB, in RIT they are referred as field actions.
Just like in VB how we drag elements and place them in applications forms, in RIT field actions can
be visually selected and added inside tests with clickable configuration changes. They can also be
repositioned by drag ‘n” drop.In this fashion it’s true that you can use RIT to test and automate
Web Services application without even writing a single piece of code. However the power of RIT is
its abilities and flexibility in pro-scripting mode.In order to provide a script free experience RIT has
concealed its true power so that it looks simple to use the features and have a test ready in no time.
On first look it would seem so obvious and quite deceiving that RIT is truly scripting free test
automation product. But on the contrary it is a full featured true scripting compatible test
development environment. More over unlike other Testing products which supports either
JavaScript or VBScript, RIT Script engine supports both JS and also any other scripting languages
that support jar extensions like — Python, Groovy etc. It gives great flexibility in selecting the
scripting language to use for automation. In addition to support scripting language RIT also
supports building libraries in Java as Custom Functions that can be used anywhere within the test
script.In the following section we elaborate the different visual elements in RIT that corresponds to
basic programming constructs.

Constants & Variables

Like in any programming language we need named placeholders to store values that can be
processed later by the program, RIT offers Tags to store values in named placeholders that can be
used later in the Tests.

Note:

RIT does not distinguishes between Constant and Variables. It leaves it to test designer to
decide on how to handle. It is up to the designer to ensure the integrity of tags to treat it as
Constant — Just like in JavaScript.

Accessing Constants & Variables

Once Values are stored in Tags they are accessed using a special pattern — name of the tag preceded
and succeeded by ‘%%’ like %%uvariable% %. This way RIT will know to look for a tag named
variable in the tag table.

Note:

To reference Tags inside Function action for legacy — you can use the same pattern as above.
However to within ECMASCRIPT use the pattern tags[“variable”].

Statement

Statements are the smallest standalone element of a programming language. Likewise Action are
the smallest standalone elements within RIT that can be executed. Statements are made of other
elements like expression, variable & operators, RIT actions include other actions from different
category — Messaging, Flow & General in Starter Edition and Full version additionally has — BPM,
GUI, Map & Stub behaviours.

"]
Documentation

i Properties

Steps

Flow = | General -

T Messaging -

Operators

RIT is all about functions. Functions are the individual unit to perform computations within RIT
tests. Everything in RIT is implemented as Functions. Operators used in programming statements
are also designed, implemented and made available as Functions from “Select Function” context
menu within action or field editors. Basic operators like addition, subtraction, multiplication and
division are made available as Functions — Add, Subtract, Multiply & Division respectively. Below
is the table showing different operators in a typical programming language and corresponding
functions available in RIT and sample usage example.

Operator Function | Usage example Result
Returned
addition add add(expr,expr, ...) | add(1,1) 2.0
Subtraction | subtract | subtract(expr,expr) | subtract(1,1) | 0.0
Multiply multiply | multiply(expr,expr) | multiply(5,2) | 10.0
Division divide divide(expr,expr) divide(10,5) | 2.0

Note:

The result of all mathetical functions always returns a decimal value. Most of times we would
need Integer value like used to Iterate. In such case there is no direct way in RIT to convert
decimal into integers.

Data Structures

In general data structures specify ways a programming language provides to store and manipulate
data. Examples — Array, List, HashMap, HashTable. Likewise RIT stores and process data in form
of Tags. Yes, it's the same Tags we discussed in Section — Constants & Variables. RIT provides a
mechanism to treat a Tag to store single Values as well as multiple values like Array. Tags that store
multiple values are called List Tags. Unlike normal Tags, List Tags cannot be created in the Tag
Store. Instead they have to be configured in the store tab of field editor and selec t the checkbox
“Append to list of values”. This will ensure multiple values are stored in the same Tag like arrays
without existing value. There is also another way to create and add values to list using ECMAScript
which we will discuss in later post.

Name

Type |%&

(value | validate | Store |

[] Field is optional

[] Ignore rule cache

Store copy of field with parent 'tns:FromCurrency' in tag 'tns:FromCurrency'

1 Mew M Delete 2fl Clone

Action Type |Copy -

Description |'e copy of field with parent 'tns:FromCurrency' in tag 'tns:FromCurrency'|

Tag FromCurrency E|

Append to list of values

oK Cancel

To access individual items in the List Tag, index numbers are used within set brackets before the
trailling ‘%%’ in the Tag reference. Example %%ListTag[0]%% gives the first value in the list,
%%ListTag[1]%% gives the second value in the list.Index of ListTags can also be referenced using
Other Tags. Example -Create a Tag for index in the Tag store and assign a value of zero inside a
Function action using ECMAScript and remember to use Regex to trim the decimal zero.index=0;
index = regex(index,” \ \ d+”,1)

Function

Execute a function and optionally tag the results. Use predefined functions, custom plug-ins and tagged data. [

" B Function | @ Store |

Script Language: |ECMASCcript ﬂ

index=0; index = regex(index,"\\d+",1)

l Ok ” Cancel [

Values from the list tag can be accessed using the Index tag in log or field actions using the format —
%% TagName[IndexTagName]%%. Example -%%ListTag[index] %%

Log

The log actions enables you to ocutput messages to console and a logging file. i

Role ‘Info ‘v‘ 1
Output File]
File options ent

Output Message:

First Item in the List : %%ListTagl[index]%%

, Ok H Cancel

Note:

1. Index reference of ListTags always starts with zero.

2. Though List Tags seems like and can be treated like Arrays, actually, inside RIT, they are
implemented as ListArrays in Java. Knowing this little secret will open doors to manipulate
them with in ECMAScripts with function steps.

3. When referencing the ListTag using index, during test design, RIT displays it in Red-Error
color to denote as if that is not vailable in the Tag Store. That’s because RIT treats
“ListTag[index]” as a single tag during design. But it will work at runtime. So it is safe to
ignore the color while using index for ListTag.

Control Structures

Traditional programming languages has control structures like if, if-else, switch etc. RIT provides
Decision Flow action to be used and configured like if, if-else, nested if and Switch Statements.. There

is no dedicated switch statement but similar behavior can be simulated using Cascaded decision
action.

if ... then ...

To make decision in our tests RIT provides decision action. There is 3 parts to this action —

1. Condition — To check for condition based on which either actions inside True or False are
executed.

Script Language: |Legacy bl
ECMASCcript [
Legacy B

ne(1,1)

2. True - If the condition evaluates to true, all statements within “True’ part is executed.
3. False — If the condition evaluates to false all statements within ‘False” part is executed.

‘5_,»"‘ CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test
1 Initialize
¢ % Test Steps

« PERFORMS OPERATION UNDER TEST

..': Send Request:"Text" on resource “/CurrencyConvertor.asmx” using schema "Text" via "CurrencyConvertorSoap”
¢ 5 Receive Reply:"Text" using schema "Text"
¢ & subscriber Error
() Log:Test encountered an Error: Check network connection to destination
X Fail:-NO MESSAGE DEFINED-
¢ & Vvalidation Failure
(=) Log:Validation Failed: Please check response.
X Fail:-NO MESSAGE DEFINED-
¢ & Decision:ne(1,1)

¢ True
=) Log:!!! Condition is True !
¢ ¢ False
@ Log:!"! Condition is False I
4 Tear-down

To help with comparing values within conditions, RIT provides below condition functions —

Operator Function Usage Example |Evaluated Result'
Equal To eq(Valuel,Value2) |eq(1,1) TRUE :
Not Equal To ne(Valuel,Value2) |ne(1,2) FALSE I
Less than It(valuel,value2) It(1,2) TRUE '
Greater than gt(Valuel,Value2) gt(2,2) FALSE :
Less than or Equal To le(Valuel,Value2) le(2,2) TRUE I
Greater than or Equal To ge(Valuel,Value2) |[gt(2,2) TRUE '

Note: There is no if only matching conditional in RIT. Decision action always has true block and the
false block. Though to replicate the if only behavior the false block can be left empty.

The always added false block step can put to productive use. Add a log statement within false
block to check if decision condition evaluated is true or false.Loops

Loop

RIT provides 3 actions to support 3 types of looping support by modern programming languages —

1. For Loop
2. While Loop

3. Loop through data collection

For Loop —

RIT provides Iterate test action that simulates For loop. Number of times the loop to be repeated is
mentioned within the Iteration text field, example 1-5.

[5# CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [Cui

1 Initialize
¢ %, Test Steps

IMITATES FOR LOOP

= Fetch Test Data:from "Test Data Input”

¢ (3 herate:1-5
;;-) Log:This Loops 5 Times
+ Tear-down

| Config | Store

Iterations 1-5

Pacing
[1 Enable pacing

Runtime Settings

[v] Creates new test iteration
[¥] Continue on fail

Iteration Timing
[] Limit the length of each iteration

[_] Limit the length of the entire iterate action

Type Task Progress Status
s rsionRate [CurrencyConveriorsnap]Test-3 Passed

Console Il

BHEIEY:E:

<terminated> CurrencyConvertor/ConversionRate [CurrencyConvertorSoap)/ConversionRate [CurrencyConvertorSoap)Test-3
[04/24/2016, 6:20:07.846 PM] Initializing...
[04/24/2016, 6:20:07.868 PM] Using environment: Harinivass-MacBook-Pro-4

[04/24/2016, 6:20:07.869 PM] - - - - Starting main steps - - = =
[04/24/2016, 6:20:07.870 PM] Fetch Test Data:from "Test Data Input" Opening data source for initial use when no grouping
applied
[04/24/2016, 6:20:07.873 PM] This Loops 5 Times
[@4/24/2016, 6:20:07.873 PM] This Loops 5 Times
[04/24/2016, 6:20:07.873 PM] This Loops 5 Times
[04/24/2016, 6:20:07.873 PM] This Loops 5 Times
[04/24/2016, 6:20:07.874 PM] This Loops 5 Times
6:20

[04/24/2016, :07.874 PM] [Passed] 5 iteration(s) completed successfully
Logging summary: Info (5), Warnings (@), Errors (@)

Overall status:SUCCESSFUL

Iteration can also be controled by using Tags. Example — 1-%%Counter%%

E# CurrencyConvertor /ConversionRate [CurrencyConvertorSoap]/ConversionRate [Cu

1 Initialize [Config | Store

¢ & Test Steps
IMITATES FOR LOOP

Iterations 1-%%Counter®

Pacing
= Fetch Test Data:from "Test Data Input” 7 [_] Enable pacing
¢ 2y Rerate:1-%%Counter¥ :
(= Log:Value of Counter: ¥%Counter¥% | || et | ‘
+ Tear-down i1 | period (seconds

Runtime Settings
Creates new test iteration

Continue on fail

Iteration Timing

[_] Limit the length of each iteration
Maximum iteration time in seconds

[_] Limit the length of the entire iterate action

Maximum total time in seconds

<terminated> CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]ConversionRate [CurrencyConvertorSoap]Test-3
[@4/24/2016, 6:41:24.776 PM] Initializing...
[@4/24/2016, 6:41:24.788 PM] Using environment: Harinivass-MacBook-Fro-d
[@4/24/2016, 6:41:24.78@ PM] - - - - Starting main steps - - - -
[04/24/2016, 6:41:24.781 PM] Value of Counter: 5
This Loops 5 Times
[p4/24/2016, R:41:24.781 PM] Value of Counter: 5
This Loops 5 Times
[04/24/2016, B:41:24.782 PM] Value of Counter: 5
This Loops 5 Times
[pd/24/2016, 6:41:24.782 PM] Value of Counter: 5
This Loops 5 Times
[04/24/2016, 6:41:24.782 PM] Value of Counter: 5
This Loops 5 Times
[04/24/2016, G:41:24.783 PM] [Passed] 5 iteration{s) completed successfully
Logging summary: Info (5), Warnings (@), Errors (@)
Overall status:SUCCESSFUL

While Loop

RIT provides ‘Iterate while” action to simulate While Loop behavior in tests. Iterate while takes one
or more conditions and executes as long as the condition is true. Remember to avoid infinite loop
alter the value of condition variable within the Iterate while action. For Example in below test —
Counter variable is initialized to 0 and a condition ‘counter values less than or equal to 5" is added
to Iterate while action and the counter value is incremented by 1 after every iteration within the
iterate while action so that the Log statements within it are executed 5 times.

14" CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [Cul =
4 Initialize | [Config |
¢ ®, Test Steps : Condition
||| [Enter a description of what the script is intended to do
IMITATES FOR LOOP : TR R TR 7
¢ @ herate While:leG%Counters,5) Lle(%Counterss,5)
Log:Value of Counter: %%Counters i
22" Function:Run "setTag(Counter, add (%¥%Counter%, 1))"
4 Tear-down
Pacing
[Enable pacing
Pacing mode
Pe 1 (seconds
Runtime Settings
[[] Creates new test iteration
[¥] Continue on fail
Iteration Timing
[_] Limit the length of each iteration
Ximum iteration time in second
[_] Limit the length of the entire iterate action
b] 1LY Maximum total time in seconds
Type Task Progress Status
G rsionRate [CurrencyConvertorsoap]Test-3 Passed
Console 0 &

<terminated> CurrencyConvertor/ConversionRate [CurrencyConvertorSoap)/ConversionRate [CurrencyConvertorSoap)Test-3
[04/25/2016, 1:51:21.649 AM] Initializing...
[04/25/2016, 1:51:21.652 AM] Using environment: Harinivass-MacBook-Pro-4
[04/25/2016, 1:51:21.653 AM] - - - - Starting main steps = = = =
[p4/25/2016, 1:51:21.654 AM] Value of Counter: @
This Loops 5 Times
[0a/25/2016, 1:51:21.656 AM] Value of Counter: 1.0
This Loops 5 Times
[04/25/2016, 1:51:21.657 AM] Value of Counter: 2.0
This Loops 5 Times
[p4/25/2016, 1:51:21.658 AM] Value of Counter: 3.0
This Loops 5 Times
[@a/25/2016, 1:51:21.66@0 AM] Value of Counter: 4.0
This Loops 5 Times
[04/25/2016, 1:51:21.661 AM] Value of Counter: 5.0
This Loops 5 Times
[04/25/2016, 1:51:21.662 AM] [Passed] 1 iteration{s) completed successfully
Logging summary: Info (6), Warnings (@), Errors (@)
Overall status:SUCCESSFUL

[v]

lterate Data Collections

Like we use to iterate for every value in data collections like in Array, List or Dictionaries in

modern programming languages, RIT provides a mechanism to iterate through values in
ListTags.Example:

Approach 1

STEP 1: Configure Test Data Set as shown below —

'._,.."' ConversionRat...torSoap]Test-2 X @ Test Data Input X 4 b B
File Data Source
Configure this simple data source to use data from flat files as tag values in tests. @
-
File Name = /Users/harinivas/Documents,/CurrencyConvertor_TestData.csv m
@ Delimited) Fixed Width Encoding: I:E
Format Configuration

[¥] A row of the file contains column names

Rows to skip before column names |0
Rows to skip after column names 0

Delimiter Options
® Comma (JTab (U Space (U Semi-colon (O Other

Ignore delimiters within quoted strings Column count

|| calculare

[¥] Treat empty strings as null
[Treat text as null

[] Treat text as empty string

[v] Aute map new columns to tags at runtime

[] Loop Data

Preview (max 25 rows)

FromCurrency| ToCurrency

usD INR

AFA ALL

DZD ARS

BSD XOF

WND YER

| Refresh | ‘ Copy column names to clipboard ‘

-

STEP 2: Iterate over the test data set created aboveSTEP 3: Use Function actions to read individual
tag values and store them into a tag as List. STEP 4: Use Function to calculate the number of items
in the list using ECMAScript and size() function available in it. And create a new tag “index” to be
used to iterate with in the list. Set the index tag to zero. Remember to trim the the decimal from the

result of the Index.STEP 5: Use Iterate While action to check for the condition index <=ListCount
(No of Items in the listlt(%%index% %, % %ListCount% %)

Iterate While

Repeat test steps while a specified condition is true. @

Config

Condition
Enter a description of what the script is intended to do

ScriptLanguage: 'OR' Expressions l:|| Add ” Delete || Test]

Tt (s%index®%, $5ListCountss)

Pacing
[| Enable pacing

Pacing mode | |

Period (seconds)

Runtime Settings
[] Creates new test iteration

Continue on fail

Iteration Timing
[[] Limit the length of each iteration

Maximum iteration time in seconds ‘ ‘

[] Limit the length of the entire iterate action

Maximum total time in seconds ‘ ‘

STEP 6: Within Iterate while use message action to Send request and Receive Reply

Test

Construct a test by using one or more of the available actions. These can be inserted by using the buttons on the =)
actions toolbar, or by using the context menu. Double click an action to edit it.

| Steps rPropenies |’ Documentation |

o @‘ Messaging = ‘ Flow ~ ‘ General -

=+ CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test-Iterate_List
4 Initialize
9 ﬁ«, Test Steps
? l":.l lterate Test Data: over Test Data Input
[=4* Function:Run “%%FromCurrency®%", append to"xFromCurrency”
[2* Function:Run “¥%ToCurrency®%", append to"xToCurrency"
g;) Log:New FromCurrency List %%xFromCurrency?%
24* Function:Run "ListCount=xFromCurrency.size(); index=0; index = regex(index,"\\d+",1)"
[#4* Function:-NO FUNCTION DEFINED-
(=) Log:Size of FromCurrencyList %%ListCounts
¢ @ iterate While:It(3%3ind e x33%,%%ListCountx)

& Send Request:"Text" on resource */CurrencyConvertor.asmx” using schema “Text" via “CurrencyConvertorSoap”
S Receive Reply:"Text" using schema "Text"

Function:Run “regex(add(index,1), "\d+ 1), store into index.
4 Tear-down

STEP 7: Inside of Send request List Tag and Index can be used to tag the input fields like in be
screenshot.

Send Request
Publish a message and wait for a response to be received. This can then be validated accordingly.

[Config | Value | store |

<4 ~ Transport |ﬁ CurrencyConvertorSoap || Browse... Formatter |*%; HTTP Message

Message Header
HTTP Properties | HTTP Headers |

»

Resource Path ‘ /CurrencyConvertor.asmx

HTTP Method |POST

Ivl Follow Redirects

2 - 2| 3| @] Message Type [Text |~ AENBREEE
Message]

¢ |13 Text (Message) v
% ‘& text (String) {Document-Literal SOAP}
ConversionRate__ INPUT__ ConversionRateSoag
tns:ConversionRate (Element) [v]

g xmins:tns (Attribute) http: / jwww.webserviceX .NET
tns:FromCurrency (Element)

" (Texy vl

tns:ToCurrency (Element)

‘5 (Text) sxToCurrencylind e x]%%

[o« || concel |

Console

Ele&3 #

<terminated> CurrencyConvertor/ConversionRate [CurrencyConvertorSoap)/ConversionRate [CurrencyConvertorSoap|Test-Iterate_List
[05/02/2016, 11:32:52.564 PM] Initializing...

[05/02/2016, 11:32:52.567 PM] Using environment: Harinivass-MacBook-Pro-4

[@5/02/2016, 11:32:52.567 PM] - - - - Starting main steps - - - -

[05/02/2016, 11:32:52.569 PM]| New FromCurrency ListUSD Steps showing building
New ToCurrency List INR up of List Tag using

[05/02/2016, 11:32:52.571 PM]| New FromCurrency List {USD, AFA} JavaScript

New ToCurrency List {INR, ALL}
[05/02/2016, 11:32:52.572 PM]| New FromCurrency List {USD, AFA, DZD}

New ToCurrency List {INR, ALL, ARS}
[85/02/2016, 11:32:52.574 PM]| New FromCurrency List {USD, AFA, DZD, BSD}
New ToCurrency List {INR, ALL, ARS, XOF}
New FromCurrency List {USD, AFA, DZD, BSD, VND}
New ToCurrency List {INR, ALL, ARS, XOF, YER}

Values fetched using the

[05/02/2016, 11:32:52.576 PM index variable

[05/02/2016, 11:32:52.583 PM] S1Zé 0T FromCUFTencyL1st 5
[85/02/2016, 11:32:52.584 PM] |[From Currency @ Index @ usp
To Currency @ Index @ INR

[85/02/2016, 11:32:52.594 PM] |Send Request:"Text" on resource "/CurrencyConvertor.asmx" using schema "Text" via "CurrencyConvertorSoap" - Send message
[05/02/2016, 11:32:52.686 PM] |Receive Reply:"Text" using schema "Text" - Message validation passed

[05/02/2016, 11:32:52.691 PM] |From Currency @ Index1 AFA
To Currency @ Index 1 ALL
[05/02/2016, 11:32:52.704 PM] |Send Request:"Text" on resource "/CurrgncyConvertor.asmx" using schema "Text" wia "CurrencyConvertorSoap” - Send message
[05/02/2016, 11:32:52.788 PM] |Receive Reply:"Text" using schema "Text" - Message validation passed

[05/02/2016, 11:32:52.793 PM] |From Currency @ Index2 DZD
To Currency @ Index 2 ARS
[05/02/2016, 11:32:52.814 PM] |Send Request:"Text" on resource "/CurrencyConvertor.asmx" using schema "Text" wia "CurrencyConvertorSoap" - Send message
[05/02/2016, 11:32:52.900 PM] |Receive Reply:"Text" using schema "Tex" - Message validation passed

[85/02/2016, 11:32:52.906 PM] |[From Currency @ Index3 BsD
To Currency @ Index 3 XOF
[05/02/2016, 11:32:52.917 PM] |Send Request:"Text" on resource “/CurrencyConvertor.asmx" using schema "Text" via "CurrencyConvertorSoap" = Send message
[05/02/2016, 11:32:52.998 PM] |Receive Reply:"Text" using schema "Text" - Message validation passed

[05/02/2016, 11:32:53.004 PM] |From Currency @ Index4 VND
To Currency @ Index 4 YER
[05/02/2016, 11:32:53.015 PM] Send Request:"Text" on resource “/CurrencyConvertor.asmx" using schema "Text" via "CurrencyConvertorSoap" - Send message
[05/02/2016, 11:32:53.103 PM] Receive Reply:"Text" using schema "Text" - Message validation passed

[05/02/2016, 11:32:53.110 PM] [Passed] 5 iteration(s) completed successfully

Logging summary: Info (11), Warnings (@), Errors (@)
Overall status:SUCCESSFUL

Approach 2:

Another straight forward approach is to avoid calculating the list tag size and using it within
iterate while action. Instead just mention the list tag in the condition field like below — How ever
remember that all steps within the Iterate while action will be repeated for every item in the list
and we have to still use the index tag/value to access the individual elements in the list tag.

Iterate While
Repeat test steps while a specified condition is true. @'H

| Config
Condition
\Enter a description of what the script is intended to do

Script Language: |Legacy hd ‘OR' Expressions D‘ Add || Delete || Test ‘

%%F romCurrencyssss

BlockBlock is a set of statements grouped together. in C / Java opening and closing curly braces are
used to denote the beginning and end of a block. However RIT provides block as a visual element —
Action Group — with a folder icon image to have test steps grouped and displayed like a tree

structure. Nested blocks are also possible.

Function

Functions in programming languages are series of related steps (instructions) grouped together as
a block to perform a task. RIT provides a visual element named ‘Functions’ to add functions to
tests. This is available from the General Menu. Opening up the Function step provides two modes
to work with them.

1. ECMAScript — allows to add JavaScript snippets to Function step.
2. Legacy — allows using built-in Functions from the library.

Note:

The difference between using ECMAScript and Legacy is that the way Tags should be
referenced. In ECMAScript they can be referenced just with their names or using notation
‘tags[“name”]’. RIT notation of tags — %%TagName%% will not work in ECMAScript and
ECMAScript notation of referencing tag won’t work in Legacy. One another difference is that
functions supported by script engine (like JavaScript or python) will be available to use within
ECMAScript along with build in library but only Functions from built-in library available for
use in Legacy mode. We can of course create Custom Functions using eclipse and add them to
built-in library.

Comments

Adding comments to program helps in documentation and helps readability in programs. Just like
it RIT supports comments by providing Comment action as a visual element that can be added as
steps at point inside the test. Comment actions are not executed when test is run but only added to
aid in readability of the test.

Comment

The comment actions enable you to add notes. o

PERFORMS OPERATION UNDER TEST

[| Render comment as HTML

Dk Cancel

5,* CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test
4 Initialize
¢ &, Test Steps
i PERFORMS OPERATION UNDER TEST
@ Send Request:"Text" on resource “/CurrencyConvertor.asmx” using schema "Text" via "CurrencyConvertorSoap”
fy Receive Reply:"Text" using schema "Text"
-] 133 Decision:eq(1.1)
¢ & True
=) Log:!!! Condition is True 11!
¢ i False
f= Log:!!! Condition is False !!!
4 Tear-down

Note

Unlike in programming languages where comments are just text, RIT allows text to be
displayed as HTML Content. This allows to add Font Color and Text Background to signify the
importance of the following test step and add more readability to tests.

Comment <HTML> <Title></Title> <Body><H3><|>PERFORMS OPER
Comment
The comment actions enable you to add notes. =
<HTML=>
<Title=</Title=

<Body=<H3=<B=<I=PERFORMS OPERATIOM UMDER TEST </I=</B=</FONT=></H3></Body=
</HTML=>

Render comment as HTML

| Ok || Cancel

@ [H| Messaging ~ | Flow - | General ~

=+ CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorsoap]Test
1 Initialize

? @H. Test Steps

PERFORMS OPERATION UNDER TEST

@ Send Request:"Text" on resource “/CurrencyConvertor.asmx” using schema “Text” via "CurrencyConvertorSoap”
% Receive Reply:"Text" using schema "Text"
L 133 Decision:eq(1,1)
¢ . True
(=) Log:!!! Condition is True !!!
¢ {2 False
(=) Log:!"! Condition is False 11!
4 Tear-down

Exception Handling

Most modern programming languages provide exception handling to react and respond to errors
that occur during runtime. In RIT there are possibilities that each action step might fail at runtime.
In that case Test stops at the point of error. However we might want to display a message in the
console for troubleshooting that the Test failed due to an Unknown error or specific reason. In such
case we can add a Failure Path to the test action and add a log message to display in console or to a
log file the details of the failed test step.

Note:

When failure path is added to test step and if the test step fails, error message is displayed and
steps within the failure path is executed. After which the execution continues to the next action
following the failed step. Also when failure path is used though error message is displayed in
the console, test result will always show as Passed unless there is a Fail action encountered after
the failure path either as a part of failure path or outside of it. So it is recommended to use Fail
action where ever required to have correct test status.

‘f,«" CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test
1 Initialize
¢ % Test Steps

2 PERFORMS OPERATION UNDER TEST

: Send Request:"Text" on resource "/CurrencyConvertor.asmx” using schema "Text" via "CurrencyConvertorSoap”
¢ 5 Receive Reply:'Text" using schema "Text"
9 @ Subscriber Error
() Log:Test encountered an Error: Check network connection to destination
X Fail:-NO MESSAGE DEFINED-
¢ & Vvalidation Failure
‘@ Log:Validation Failed: Please check response.
X Fail:-NO MESSAGE DEFINED-
T }@ Decision:ne(1,1)
¢ [True
= Log:!!! Condition is True !
¢ 1 False
(=) Log:!"! Condition is False 1)
4 Tear-down

Type Task Progress Status
54 versionRate [CurrencyConvertorsoap]Test Failed
Console

E]le B@ 4

<terminated> CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test
[@4/22/2016, 7:19:15.838 AM] Initializing...

[@4/22/2016, 7:19:15.842 AM] Using environment: Harinivass-MacBook-Pro-4

[@4/22/2016, 7:19:15.842 AM] - - - - Starting main steps - - = -

[@4/22/2016, 7:19:15.853 AM] Send Request:"Text" on resource "/CurrencyConvertor.asmx" using schema "Text" via
"CurrencyConvertorSoap" - Send message

[04/22/2016, 7:19:15.940 AM] [Assertion Failed] Receive Reply:"Text" using schema "Text"

"/text/ConversionRate__ OUTPUT__ ConversionRateSoapOut/tns:ConversionRateResponse/tns:ConversionRateResult/{}" - The

expected value is not valid.[CRRIT4354E] field can only contain numeric values in the range '4,9E-324" to
'1.7976931348623157E308', eg '4.53', '6'. (Action = "Equality")

[04/22/2016, 7:19:15.940 AM] [Assertion Failed] Receive Reply:"Text" using schema "Text"

"/text/ConversionRate__ OUTPUT__ ConversionRateSoapOut/tns:ConversionRateResponse/tns:ConversionRateResult/{}" - Expected
value "", found value "-1.8" (Action = "Equality")

[04/22/2016, 7:19:15.940 AM] [Warning] Validation Failed: Please check
[04/22/2016, 7:19:15.940 AM] [Failed] Fail:
[04/22/2016, 7:19:15.941 AM] [Failed] 1 iteration{s) completed 1 iteration(s) failed (1)
Logging summary: Info (@), Warnings (1), Errors (@)
Overall status:FAILED

response.

Type Task Progress Status
1,4"‘ versionRate [CurrencyConvertorsoap]T est Failed
Console

ERIEER

<terminated> CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test
[@4/22/2016, 7:19:15.838 AM] Initializing...

[04/22/2016, 7:19:15.842 AM] Using environment: Harinivass-MacBook-Pro-4

[@4/22/2016, 7:19:15.842 AM] - - - - Starting main steps - - - -

[@4/22/2016, 7:19:15.853 AM] Send Reguest:"Text" on resource "/CurrencyConvertor.asmx" using schema "Text" via
"CurrencyConvertorSoap" - Send message

[@4/22/2016, 7:19:15.940 AM] [Assertion Failed] Receive Reply:"Text" using schema "Text"

"/text/ConversionRate_ OUTPUT__ ConversionRateSoapOut/tns:ConversionRateResponse/tns:ConversionRateResult/{}" - The
expected value is not valid. [CRRIT4354E] field can only contain numeric values in the range '4.9E-324" to
'1.7976931348623157E308", eg '4.53', '6'. (Action = "Equality")

[04/22/2016, 7:19:15.940 AM] [Assertion Failed] Receive Reply:"Text" using schema "Text"

"/text/ConversionRate__ OUTPUT__ ConversionRateSoapOut/tns:ConversionRateResponse/tns:ConversionRateResult/{}" - Expected
value "", found value "-1.0" (Action = "Equality")

[04/22/2016, 7:19:15.940 AM] [Warning] Validation Failed: Please check response.

[04/22/2016, 7:19:15.940 AM] [Failed] Fail:

[@4/22/2016, 7:19:15.941 AM] [Failed] 1 iteration(s) completed 1 iteration(s) failed (1)
Logging summary: Info (@), Warnings (1}, Errors (@)
Overall status:FAILED

Assertions

In Programming Languages — assertions are true-false statements which is expected to be always
true for the execution to proceed. If during runtime, executing assertion statement yields false, the
program stops execution at that point and execution does not continue beyond that statement.

Note:

Assertions can be used as if only Decision Actions. but remember when decision fails

executions stops. To have execution continue place the assertion in the action group or add
failure path to it.

5_,? CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test
1 Initialize
? @\. Test Steps

PERFORMS OPERATION UNDER TEST

e ‘%« Assertne(#%FromCurrency?i, %% T oCurrency#%)
¢ & Failure Path
(=) Log:Please check Input - FromCurrency and ToCurrency cannot have the same value
X Fail:FromCurrency & ToCurrency are same
“’ Send Request:"Text" on resource “/CurrencyConvertor.asmx” using schema "Text" via "CurrencyConvertorSoap”
? f., Receive Reply:"Text" using schema "Text"
¢ & Subscriber Error
f=) Log:Test encountered an Error: Check network connection to destination
x Fail:-NO MESSAGE DEFINED-
¢ & Validation Failure
(=) Log:Validation Failed: Please check response.
x Fail:-NO MESSAGE DEFINED-
? }‘3{ Decision:ne(1,1)

ol True
=) Log:!!! Condition is True !!!

ol False
(=) Log:!!! Condition is False !!!

4 Tear-down

1/O Functions

Any programming languages has to deal with data input into the system and output from the
system. Similarly RIT provides a couple of ways to deal with input and output. Provides 4 ways —

1. Write contents into Console

2. Write Contents into File

3. Read Contents from File

4. Read data from User at runtime.

Write contents into ConsoleUse Log action to display text into Console.

“’ Send Request:"Text" on resource "/CurrencyConvertor.asmx” using schema "Text" yi= " mssme o amntarfan ot
? 1"3 Receive Reply "Text" using schema “Text"
¢ & Subscriber Error Log
{=) Log:Test encountered an Error: Check network connection to destination The log actions enables you to output messages to console and a o
X Fail:-NO MESSAGE DEFINED- logging file.
¢ & validation Failure
(=) Log:Validation Failed: Please check response. -
3¢ Fail:-NO MESSAGE DEFINED- Le warning |~
=) Log:Data Read from File: Output File (]
9 & Decision:ne(1,1) File options Append [¥] Flush
¢ & True
f=) Log:!1! Condition is True 11! Output Message:
¢ False Test encountered an Error: Check network connection to destination ‘
=) Log:!!! Condition is False !l
Ry [Goncel]
Ok Cancel
=) Log:%%TEST /NAME3%, %% TEST /RESULT®%

File I/O — Write to fileRIT provides log action to write contents into a file. As seen in the example
below the test status is logged to a file. A log message is added in the Tear-down step and
configured to add test name and test result to a CSV file that can be opened outside RIT in a
spreadsheet application.

[Steps | Properties | Documentation |

T @| Messaging ~ | Flow ~ | General + | © Log :éTESTjNAME%%.%%TEST,"RESULT W Enabled d Apply @ Discard
? RTest Steps i
:| Role |Inf0 {v‘

PERFORMS OPERATION UNDER TES | -
;| Output File fUsers/harinivas/Documents/TestStatus.csv E]
¢ <& Assertne(¥¥FromCurrency®%,%%ToCurrency | -
¢ & Failure Path | File options [v] Append Flush
[~ Log:Please check Input - FromCurren Output Message:
X Fail:FromCurre ncy & ToCurrency are B
“t’ Send Request:"Text" on resource “/Currency
o 5 Receive Reply: " Text" using schema "Text"
¢ & subscriber Error
[Log:Test encountered an Error: Chec
X Fail:-NO MESSAGE DEFINED-
¢ & validation Failure
[=) Log:Validation Failed: Please check re
X Fail:-NO MESSAGE DEFINED-
¢ $ Decision:ne(1,1)
¢ O True
[=) Log:!!! Condition is True !!!
¢ 2l False
= Log:"! Condition is False !l
¢ ¥ Tear-down
fm) LOG:¥M4TEST /NAME%%, %% TEST /RESULT % |+
<] Il | [

| »

®STEST/NAMESS, % TEST/RESULTS%

DS . fx

A B

1 |ConversionRate [CurrencyConvertorSoap]Test FAILED
2
3
4

File I/O - Read from fileReading data from file is not straight forward as writing into it as it
requires two RIT concepts — File Data Source and Tag System.STEP 1: A file Data source should be
created pointing to a CSV file.

Bl Test Data Input X

File Data Source

Configure this simple data source to use data from flat files as tag values in tests. -
File Name | /Users/harinivas/Documents/CurrencyConvertor_TestData.csv | Browse... ‘ | Open... | »
@ Delimited () Fixed Width Encoding: | |v|
Format Configuration
A row of the file contains column names
Rows to skip before column names [0
Rows to skip after column names 0
Delimiter Options
i® Comma O Tab 0 Space O Semi-colon) Other
| | Calculate

Ignore delimiters within quoted strings Column count

[] Treat empty strings as null

[] Treat text as null
[] Treat text as empty string
Auto map new columns to tags at runtime

Loop Data
Preview (max 25 rows)

FromCurrency| ToCurrency

usD INR

AFA ALL

DZD ARS

B5D XOF

WND YER

| Refresh | | Copy column names to clipboard | =

STEP 2: Click on “Copy column names to clipboard” from bottom of the data source tab.STEP 3:
Open tag store

Tags:

@RX|DE (oo

MName Description Default Value

i FromCurrency

@ ToCurrency

STEP 4: paste the copied tags.STEP 5: Add a Fetch Test Data action and configure it with the

created Test data source.

k# CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test (2)
1 Initialize
¢ ®_ Test Steps

PERFORMS OPERATION UNDER TE cetch Test Data from "Test Data Inout" [CurrencyConvertor/C

— Fetch Test Data:from “Test Data Input” Fetch Test Data

9 <@J&sser‘crua[945%!-‘r|:1-mCurreru:v%%,%‘,%Tu-Currem
¢ & Failure Path

fm) Log:Please check Input - FromCurre

Use the current row of test data to populate tag values.

x Fail:FromCurrency & ToCurrency are

& Send Request:"Text" on resource “/Curren¢ Dataset | Test Data Input | | Browse...

Receive Reply:"Text" using schema "Text"
¥ % PY 9 Group data by column |

¢ & Subscriber Error
{=) Log:Test encountered an Error: Che | Mappings

X Fail:-NO MESSAGE DEFINED- Tag name Data

¢ & validation Failure ToCurrency & ToCurrency

{=) Log:Validation Failed: Please check |FromCurrency & FromCurrency

X Fail:-NO MESSAGE DEFINED-

9 ﬁ{ Decision:ne(1,1)

o True

After thi h to th Xt
(Log:1!! Condition is True 1! [] After this row has been mapped, advance to the next row

fm Log:!!! Condition is False !!!

¢ ¢ False | ok || Cancel |

STEP 6: Edit the Send Request message to read value from the Tags — %%FromCurrency%% &

%% ToCurrency %%

Send Request "Text" on resource "/CurrencyConvertor.asmx" using schema "Text" via "CurrencyConvertorSoap” [...

&

Send Request

Publish a message and wait for a response to be received. This can then be validated accordingly. "

[Config [Value | Store |

< - Transport |ﬂ CurrencyConvertorsoap H Browse... Formatter | HTTP Message |v|

*»

Message Header
HTTP Properties | HTTP Headers |

Resource Path | /CurrencyConvertor.asmx

HTTP Method |POST | +| (1 Follow Redirects

=

D~ &4|l3|@ MessageTvpelTeﬂ |"' E'E i

Message

[%Tem (Message)
“&- text (String) {Document-Literal SOAP}
#— ConversionRate__ INPUT__ ConversionRateSoag

tns:ConversionRate (Element)

‘& xmlins:tns (Attribute)

tns:FromCurrency (Element)

‘& (Texy
tns:ToCurre

http:/ fwww.webserviceX.NET/

(Element)

FEREEEEREEE

| Ok || Cancel

STEP 7: Add log step to display the values read from file

« PERFORMS OPERATION UNDER TEST

=y Fetch Test Data:from ‘Test Data Input”

-2 % Assert:ne(#FromCurrencyas, %% ToCurre Lo
o & Failure Path

[=) Log:Please check Input - FromCur

X Fail:FromCurrency & ToCurrency 3

9

The log actions enables you to output @

S %" cannot have the same value
messages to console and a logging file.

"" Send Request:"Text" on resource "/Curre irtorSoap”
e i‘y Receive Reply:"Text" using schema “Text Role |Infn {v‘
o & subscriber Error)
[Log:Test encountered an Error: Cl R EI BIOWSE.o.
x Fail:~NO MESSAGE DEFINED- File options Append Flush

¢ & validation Failure

Output Message:
[w) Log:Validation Failed: Please chec

4 . Data Read from File:
'x Fall-NO MESSEGI_E D FromCurrency: F5FromCurrencyss
! g Il;)g.‘D‘ata Re{idli;mm File: ToCurrency: #4ToCurrencyss
ecision:ne(l,
o 2 True
(= Log:!!! Condition is True !!! | ok | ‘ Cancel
¢ . False
= Log:!!! Condition is False 1!
¢ 4 Tear-down
@ Log: %636 TEST /NAMESE3%, %56 TEST fRESULT %%
STEP 8: Save and Run
Type Task Progress Status
55 sionRate [CurrencyConvertorsoap]Test (2) Passed
Console lol
[Elal&® 2

<terminated> CurrencyConvertor/ConversionRate [CurrencyConvertorSoap]/ConversionRate [CurrencyConvertorSoap]Test (2)
[04/23/2016, 11:18:06.980 AM] Initializing...
[@4/23/2016, 11:18:06.984 AM] Using environment: Harinivass-MacBook-Pro-4
[04/23/2016, 11:18:086.984 AM] - - - - Starting main steps - - - -
[@4/23/2016, 11:18:06.986 AM] Fetch Test Data:from "Test Data Input" Opening data source for initial use when no grouping
applied
[04/23/2016, 11:18:06.998 AM] Send Request:"Text" on resource "/CurrencyConvertor.asmx" using schema "Text" via
"CurrencyConvertorSoap"” - Send message
[04/23/2016, 11:18:07.089 AM] Receive Reply:"Text" using schema "Text" - Message validation passed
[04/23/2016, 11:18:07.089 AM] Data Read from File:
FromCurrency: USD
ToCurrency: INR
[04/23/2016, 11:18:07.089 AM] !!! Condition is False !!!
[04/23/2016, 11:18:07.089 AM] - - = = Starting teardown = = = =
[04/23/2016, 11:18:07.089 AM] ConversionRate [CurrencyConvertorSoap]Test (2),PASSED
[04/23/2016, 11:18:07.090 AM] [Passed] 1 iteration{s) completed successfully
Logging summary: Info (3), Warnings (@), Errors (@)
Overall status:SUCCESSFUL

Read data from User at runtime - Like C & Java programming languages have options to read
data entered in console RIT has a test action — “User Interaction” to read data from user at runtime.

Note:

It is a bad idea to read data from user at runtime for testing. In today’s QA environment,
automation is used to avoid any manual interaction. So having user to provide data to test at
runtime is a bad idea. May be can be used while designing a test but not while finalizing the
test.

Library

Every modern programming languages have either built in Library of classes or functions or public
library contributed by open source community. RIT supports both. It has built-in Functions and
also has provisions for third party to contribute on Functions. Refer table above for list of built-in
functions. RIT also provides two ways to build libraries of Function.

1. Build Custom Functions — refer like for ideas on Custom Functions and how to build one —
Demystifying Custom Functions

2. Build JavaScript library — Tutorial on Building and Using JavaScript Library — Coming Soon

String Manipulations

Programs often need to be manipulated to solve specific problems. RIT provides below options and
functions to manipulated strings to deal with test automation requirements.String InterpolationTo
reference values stored in tags in log action or sql action or field actions reference tag name in
format — %%TagName% %

Assert

Choose evaluation expressions to determine test execution flow. Use predefined
functions, custom plug-ins and tagged data. If the functions pass then the test will
continue to execute: otherwise the test will fail.

Enter a description of what the script is intended to do

Script Language: |Legacy - 'OR' Expressions [Add Delete Test

ne(%%FromCurrency®s, $5ToCurrencyss)

Ok Cancel
¢ |8 tns:FromCurrency (Element) Process Children
rFromCurre noyses
¢ |3 tns:ToCurrency (Element) Process Children
B (Text) e ToCurrency®s

B

String ComparisonUsing the ‘eq” Function we can check if two strings are same or not.

https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/

Function

Execute a function and optionally tag the results. Use predefined

[a-d]*
functions, custom plug-ins and tagged data.
1/ [3* Function | @) Store
Script Language: |Legacy -
Eq{ll'|,rrE5llrll'|.rrE5ll}

Output

true -]

Exception

@ oK

Ok Cancel

M R RTINS W ATIEIFEDS S MmO DN TSN P L IR T O R

Same way we can use ‘ne’ — Not Equal function to check if two strings are equal.
Note:
The strings used as function parameter need not be enclosed inside double quotes. RIT would

automatically consider any parameter as String. Even if we intend to compare numbers and
used numbers as parameter, RIT would treat them as String.

Script Language: [Legacy
Eq { 1.- 1] 1“ }
Output
true - |
Exception
(@ oK

Create String at runtimeWe can use ‘CreateText’ function to generate random text of length
specified as first parameter. Example CreateText(5) would create a random text of size 5 bytes

every time it is executed.

Function

Execute a function and optionally tag the results. Use predefined oo
functions, custom plug-ins and tagged data.

1/ [z4* Function | W Store

Script Language: |Legacy -
createText(5)
Output
nu -
Exception
@ 0K

Alternatively we can create a string of certain repeating character using the CreateText function
with the second optional parameter mentioning the repeating character. Example CreateText(15,-)
creates a string of “ ”. Do not include the second parameter value within quotes, if given
RIT considers it as a part of repeating character.

Function

Execute a function and optionally tag the results. Use predefined]
functions, custom plug-ins and tagged data.

f [3* Function | @) Store

Script Language: |Legacy -
createText(15,_) 2un "createText(15. 1"[Test Output]
Output
Exception
©) OK
Ok Cancel

String ConcatenationRIT has a ‘join” function that concatenate 2 or more string into one. First
Parameter is the delimiter. Example Join (“-“,1,2,3) would return “1-2-3”

[=-4]*

Function
Execute a function and optionally tag the results. Use predefined functions,

custom plug-ins and tagged data.

l/ [=4* Function | &) Store
Script Language: (Legacy -
join{("=", 1, 2, 3)
Run “join{ "-", 1, 2, 3 }"[Test Outp
Output
1-2-3 -
Exception
@ oK
Ok Cancel

Note:For normal style string concatenation without delimiters include empty string for the first

parameter. Example Join (““,1,2,3) would return “123”

[

Function
Execute a function and optionally tag the results. Use predefined functions,

custom plug-ins and tagged data.

l/ [=4* Function | @) Store
Script Language: |Legacy -
join{ "", 1, 2, 3) -
tun "join{ "", 1
Output
123 -
Exception
(@ oK
Ok Cancel

Note:If you wish to include space as a part of the String, include it as a parameter within double

quotes.

Function

Execute a function and optionally tag the results. Use predefined functions, [a2*
custom plug-ins and tagged data.

l/ [z4* Function | @) Store

Script Language: |Legacy -
join{ "", Hello, "™ ", World!)
Output
Hello World! [

Exception

Ok Cancel

Getting SubStringRIT does not supports direct Function to get substring from a String. However if
the string is a delimited string it provides getToken Function to retrieve each part of the String.
Example consider the string that represents customer delimited as “FirstName-MiddleName-
LastName-Stree Address-Apt #-City-State-Zip”. to get address part of the customer record delisted
by a hyphen use getToken(”-“,3,”John-Miller-123 Wal Street-456-Iving-TX-34522", true). Result is
“123 Wal Street”. Note that there is a empty middle name part in the example. Also remember first
parameter is the delimiter char that should be enclosed within double quotes, second one is the
index that starts with “0”, Third one is the actual String from which we are extracting substring
and fourth is a boolean that says if empty part of delimited string should be ignored or not.

Function

Execute a function and optionally tag the results. Use predefined functions, I
custom plug-ins and tagged data.

l/ [#4* Function | @) Store

Script Language: |Legacy -
getToken("=",3,"John=-Miller-123 Wal Street-456-Iving-TX-34522", true)
Run "getTo
Output
123 Wal Street -~ |
Exception
@ oK

Ok Cancel

if Fourth parameter is false then any empty segment of delimited string is ignored and result is 456.

Function

Execute a function and optionally tag the results. Use predefined functions, 2"
custom plug-ins and tagged data.

1/ [=e* Function |) Store

Script Language: |Legacy -
getToken("=",3,"John--Miller-123 Wal Street-456-Iving-TX-34522", false)
Output
456 - |
Exception
@ oK

Ok Cancel

Note:If a sub String needs to be extracted from non delimited string, use JavaScript substring()
function by selecting ECMAScript from the Script Language dropdown.

Hope this article was useful to get started with scripting in RIT. Do post your questions or
comments.

More to follow on RIT.

SEPTEMBER 13, 2015SEPTEMBER 14, 2015/ HARINIVAS GANAPATHY

Demystifying RIT Custom Function — Part 3:
Wrapping_up_for Deployment

https://harinivasganapathy.wordpress.com/2015/09/13/demystifying-rit-custom-function-part-3-wrapping-up-for-deployment/
https://harinivasganapathy.wordpress.com/author/hganapathy0823/
https://harinivasganapathy.wordpress.com/2015/09/13/demystifying-rit-custom-function-part-3-wrapping-up-for-deployment/

we discussed how to set the requirements ready to build a Custom Function using Eclipse plugin
development framework. In Part 2

putting-the-gears-together/) we discussed the architecture of the Function class which is the
backbone of Custom Function and how to develop a Custom Function by extending the Custom
Function. We are also discussed the rules and considerations of creating a Custom Function java
class. In part 3 we will discuss about the requirements and steps to package Custom Function as
pluggable jar and deploying it in RIT.

Steps to deploy Custom Function

Create Extension Points

In order to allow 3rd party Functions added to RIT, IBM has created an extension point by means
of “‘com.ghc.ghTester.functions’. This extension point should be added to the extensions tab in our
project’s Manifest file.

1. Open plug-in’s manifest file by double clicking MANIFEST.MF

https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/
https://harinivasganapathy.wordpress.com/2015/09/10/demystifying-rit-custom-function-part-2-putting-the-gears-together/
https://harinivasganapathy.files.wordpress.com/2015/09/deployment-steps.png

- Extensions
All Extensions

Define extensions for this plug-in in the following section

25 B
type filter text

Overview Dependencies Runtime Extensions Extension Points Build| MANIFEST.MF pluginxml build.properties

(https://harinivasganapathy.files.wordpress.com/2015/09/new_extionsions
2. In the opened editor select the Extensions tab and click Add.

tab.png)
3. Select com.ghc.ghTester.functions in the New Extension Dialog

Extension Point Selection

Create a new Functions extension. W
Extension Points | Extension Wizards

Extension Point filter: *functions

= com.ghc.ghTester.functions

[¥] Show only extension points from the required plug-ins
Extension Point Description: Functions

Used to add functions to IBM Rational Integration Tester. Functions perform calculations
and operations that can be used from within a test or other functions.

If you want to confribute 1o this extension point, see the section IBM Rational Integration
Tester documentation on User-defined Functions.

Available templates for functions:

4. Click Finish.

5. Extension point and Extension point element are added to the manifest.

Oviniem | Deparincis | Rt Esersions | Esansin et i |MANIFEST M b ot i i

(https://harinivasganapathy.files.wordpress.com/2015/09/after-adding-extension.png)
Configure Extension Points

The Extension Point Element has series of fields profiled with default values. Update the values as
per the below as reference —

https://harinivasganapathy.files.wordpress.com/2015/09/new_extionsions_tab.png
https://harinivasganapathy.files.wordpress.com/2015/09/after-adding-extension.png

name: Name of the function like formatDate

displayName: User friendly, readable name that appears in Function menu inside Test function
editor. e.g) Format Date
syntax: The syntax of the Custom Function that gives an idea for the user. e.g)

formatDate(date, inputFormat [, outputFormat])

functionClass: ~ The java class name that we developed in Part 2. Fully qualified name should be
mentioned.

minParameters: The minimum parameters needed to pass in the function.

maxParameters: The maximum parameters needed to pass in the function.

Extension Element Details

Set the properties of "function’ Required fields are denoted by ™.
1111111 x formatDate

displayName™: Format Date

syntax* formatDate(date, inputFormat [, outputFormat])

com.orgname.deptname.functionname.FormatDate Browse...

Save the manifest file. Next step will fail if not saved before proceeding.
Adding External Jars

This step is optional. It is required if the java class developed in Part-2 uses additional external jars.
Follow these steps to those external jars to the plug-in jar we created above.

1. Add the Jar to the root of the plug-in project
2. Add the jar to the plug-ins project’s build path by —
1. Right-click the project and select Properties > Java Build Path > Libraries.
2. Click Add Jars and browse for the Jar just added under the plug-in project.
3. Close the properties dialog.
3. Open the plug-in’s manifest file for editing and select the Runtime tab.
4. In the Classpath section, click Add and select the Jar that was copied into the project.
5. Save the manifest file.

Generating Plug-in

In the previous steps we created a plugin. Now the plugin has to be packaged with the java class
developed in part 2. Follow the below steps to package the plugin and create a pluggable jar.

1. File > Export.
2. In the Export dialog, select Plug-in Development > Deployable plug-ins and fragments from
the list of exports.

. Click Next to display the deployable plug-ins and fragment dialog.

4. In the Available Plug-ins and Fragments list, select the plug-in that you want to generate and
export.

5. Select the Directory option and enter a directory location where the plug-in jar will be
generated.

6. Click Finish.

W

https://harinivasganapathy.files.wordpress.com/2015/09/extension-element-details.png

7. The output of this process is a directory named plug-ins and jar with the name and version
inside the plug-ins directory.

Deploying in RIT

This is the final step in developing and deploying Custom Function. Follow the below steps to
make the Custom Function available under the Functions sub menu inside RIT Tests.

1. Copy the generated plug-in Jar and paste it into the Functions folder under the projects root
folder.

2. In RIT select Tools > Reload Custom Functions so that all added Custom Functions as jar is
available in tests.

3. If needed Select Tools > View All Functions to verify that our function is loaded.

We are finally done. Now the Custom Function can be used like any other Function inside Function
action editor inside RIT.

Disclaimer: The information and Infographics produced here is based on years of experience in
RIT testing and understanding on foundational information provided in IBM Knowledge
Center. The source code re-produced here is taken from the original source and owner — IBM.

SEPTEMBER 10, 2015SEPTEMBER 14, 2015/ HARINIVAS GANAPATHY

Demystifying RIT Custom Function — Part 2:
Putting_the gears together

of the series, we discussed the list of pre-requisites and steps to set them up to begin developing
Custom Functions. In Part 2 we would explore in detail about understanding the architecture of the
Function class which is the backbone for any Functions in RIT.

Function Class Architecture

Any Function whether it is built-in or custom made — they are subclasses of Function Class
available in ‘com.ghc.ghTester.expressions’ package that we added to the target platform and manifest
dependencies in Part 1 (https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-
custom-functions/). It is important to understand the design of this Class because RIT lays down
few rules that we have to follow for it to recognize, understand, load and execute our Function.
Function Class has many methods, but three of them are very important and significant — the
public constructor, create and evaluate method.

https://harinivasganapathy.wordpress.com/2015/09/10/demystifying-rit-custom-function-part-2-putting-the-gears-together/
https://harinivasganapathy.wordpress.com/author/hganapathy0823/
https://harinivasganapathy.wordpress.com/2015/09/10/demystifying-rit-custom-function-part-2-putting-the-gears-together/
https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/
https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/

Function Class

public Constructor

ezl Nieck
el izl M

public Constructor: The way functions are designed in RIT mandates a default public constructor
with no parameters. This is needed for loading our Custom Function class into RIT JVM. We don’t
need to add any computation inside this constructor. However it can be used to initialize instance
variables.

create (int, vector) : This is a factory method that creates the instance of the particular
Function with specific arguments we send during runtime. This method is invoked when RIT
encounters the Custom Function syntax while evaluating a function action in tests. It is the
responsibility of the create function to create, initialize and instantiate the specific Function object
with matching parameters mentioned in the Function call in tests.

Note that we can design and implement more than one Custom Function inside single Java
Class file. And so it is the responsibility of the create method to initialize and instantiate the
right Function with right parameters.

evaluate (Object) : This is the actual method that performs the computation of the Function we
design and considered brain of our Custom Function Class. It is invoked by RIT after create method
returns the second Function instance.

Rules of extending Function Class

1. Custom Function class should have a public default constructor.
2. Custom Function class should override create (int, vector) method.
3. Custom Function class should evaluate (Object) method.

Flow of Control

Step 1: When RIT starts up, it creates an instance of our Custom Function class using the default
constructor and loads it to RIT JVM. For our reference we call it Instance 1. Once the Function
successfully loaded, it will be available for us to use inside function action in tests.

Step 2: When RIT encounters the Custom Function syntax, while evaluating the function action in
tests, it invokes the create method of the Instance 1 and sends two arguments in the call — (1)
number of arguments in test function call as int and (2) all the arguments as a vector. Create method

then creates another instance of the Custom Function and initializes it by calling the constructor
with matching parameters based on the arguments received.

Step 3: Then it returns the newly created instance back to RIT with all data and parameters. For our
reference we call this instance as instance 2.

Step 4: After receiving the instance 2 Custom Function object, RIT invokes the evaluate method of
Instance 2 object and sends an Object as argument.

Step 5: On receiving the call, evaluate method has to discover the String data wrapped as an
Function during the constructor call and assign it to the local variables for processing. Based on the
received arguments, the evaluate method decides what to do. After performing all the
computations it sends back the computed result back to RIT.

(https://harinivasganapathy.files.wordpress.com/2015/09/blog_rit_1.png)
Understanding using Code

Let us understand the architecture and flow of control we learnt so far by reviewing a sample code.
For this purpose i have taken the example provided by IBM in its product documentation so it
would easier when folks use the product documentation for further reference.

https://harinivasganapathy.files.wordpress.com/2015/09/blog_rit_1.png

(https://harinivasganapathy.files.wordpress.com/2015/09/code_control_flow1.png)
Understanding the notion: ‘Everything is Function’

If you would take another look at the code, if not already noticed, you would realize that
everything inside the Custom Function class either takes Function as argument or returns a
Function object. Even the data members are type Function. The vector of parameters passed are
also casted as Functions. Hence to use them for processing inside evaluate method the
parameters as Function must be evaluated to discover the String value. For this purpose we use
evaluateAsString(Object) method available in the Function Class.

Key Items for Consideration
1. There should be a public no argument constructor.

2. Class level variables should be created for each possible arguments the Custom Function is
designed to take and each of the variables should be declared as type Function.

3. Class level Function variables must be initialized inside the corresponding constructor with
parameters. Remember each parameters in Constructor are Functions so that they can be assigned
to corresponding Class Variables.

4. There should be as many constructors with possible arguments a Custom Function call can have.
For e.g. if a Custom Function is designed to take 2 or 3 or 4 arguments, then there should be 3
constructors with 2, 3 & 4 arguments respectively, so that create method would be able to use and
instantiate the second instance. Or like in the IBM example single constructors can be used,
however optional parameters must be evaluated and check for NULL like below —
Function outputFormat = null;
if (size==3) {

outputFormat = (Function) params.get(2);

/

https://harinivasganapathy.files.wordpress.com/2015/09/code_control_flow1.png

5. create method should return only a new Instance of Custom Class with the String
arguments stored as vector casted as Function before invoking corresponding constructor.

6. In evaluate method the actual String passed in Custom Function call in RIT test must be retrieved
from the Function variables using evaluateAsString method available in the Function class.

7. evaluate method should return a String.

Now that we have got our core Custom Function Java Class ready, next step is to package it as a
plug-in Jar and import it in RIT. We cover just these steps in our final Part - 3.

Continue to Part 3
(https://harinivasganapathy.wordpress.com/2015/09/13/demy
stifying-rit-custom-function-part-3-wrapping-up-for-
deployment/)

SEPTEMBER 6, 2015SEPTEMBER 17, 2015/HARINIVAS GANAPATHY

Demystifying RIT Custom Function — Part 1:
Gear up

I had a hard experience reading through the product documentation from IBM on creating Custom
Functions in Rational Integration Tester (RIT). After re-reading many times finally got hold of the
concept behind extending Functions in RIT. So just thought of sharing my learning in the hope that
it would make understanding the underlying concepts more easier than reading through the
documentation over and over again.

What is a Function?

Let us take a moment to understand the idea of Function and later dive more deep into creating
one our own that can be plugged into RIT. Generally a function is a reusable block of code that
takes one or more input (technically called parameters) from the test, performs some action (that is
abstracted to test designer) on the input data and provides an output that can be used any where
within an RIT test case later. RIT provides syntax and required parameters for using every function
within its function editor — both legacy and ECMAScript. RIT supports two types of Functions —

0 Built-in Functions — like — xpath, round, eq, gt, floor, mod, add, subtract — that are designed by
IBM and shipped with every instance of RIT Product.

o Custom Functions — RIT User (technically test designer) created Functions that meets his / her
custom needs. RIT test designer creates his own for use in more than one place.

https://harinivasganapathy.wordpress.com/2015/09/13/demystifying-rit-custom-function-part-3-wrapping-up-for-deployment/
https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/
https://harinivasganapathy.wordpress.com/author/hganapathy0823/
https://harinivasganapathy.wordpress.com/2015/09/06/demystifying-custom-functions/

What is a Custom Function?

Before taking a detailed view of Functions let us review what is a Custom Function at an high
abstracted level. A Custom Function is a Function that is designed, implemented and used by RIT
user (tester or test designer) and not that provided by IBM by default. In addition to the built-in
Functions provided by RIT, it also provides capability to create additional Functions by test
designers to meet custom needs and testing requirements that can be reused across RIT tests &
projects within an organizations.

Function is actually a Class provided by IBM so that it can be extended to create Functions
tailored and customized for testers requirement. Hence the name — Custom Function. More about
this in Part 2

Steps to develop Custom Functions:

Like every other programming model, developing Custom Functions involves 3 steps with each
steps involving more additional steps.

1. Design & Develop
2. Configure
3. Integrate

Configure RIT &

Develop |
Function Class T

Create

Initial Setup

Step 1 - Design & Develop

First step is more critical and complex part as it covers the core purpose, design and
implementation of the Function. It involves 3 additional steps —

Step 1.1: Prepare yourself and complete initial setup.
Drafting a logical design of the function —

From test designer (end-user of the completed plugin) perspective — Function is a black box, because
he doesn’t need to know the Function’s Implementation — how it process the input to produce the
output. All a Function says is “Give me, so and so input and i will do some computation with the

https://harinivasganapathy.files.wordpress.com/2015/09/process-ladder_2.png

input to convert it and give you a certain output.

Hi There!,
| am black box.
You give me ‘X’ ... | will
give you f(x) =y’

v)

f(x)

So from Function designer perspective he has to have answers to below questions to start creating a
Custom Function.

1. What's the purpose of it?

2. What are the minimum and maximum parameters needed to perform its indented operation?
3. What are the Parameters?

4. What should be its output?

Once answers to these questions are collected, we then move into the tools / software requirements

Step 1.2: Software Requirements

1. RIT installation
2. Eclipse installation — with PDE (Plugin Development Environment Support)

Step 2: Create Plugin Project in Eclipse

RIT is built on top of Java and Eclipse Platform. Hence it has ability to accept plugins developed &
packaged as eclipse plugins.

To create an Eclipse Plugin Project:

1. Start / Open Eclipse Project
2. Create an Eclipse Workspace
3. Select New > Project from the File menu. The New Project wizard is displayed.

m Edit Source MNavigate Search Project Run Window Help

ew - L . Plug-in Project I‘
pen Flle... Feature Project
Close BW = Project...
Close All W
Task
Save = Component Definition
4l Save As... 1! Product Configuration
Save All “& Target Definition
Revert 5 Package |
rars & Class
Rename... & Interface
Refresh 5 &7 Source Folder
Convert Line Delimiters To > File
(7 Folder
& Print... ¥P
[Example... |
Switch Workspace >
Restart [Other... 38BN

(https://harinivasganapathy.files.wordpress.com/2015/09/project_selection.png)

4. Select Plug-in Development > Plug-in Project, then click Next.
e 0

New Project

Select a wizard

Create a Plug-in Project
Wizards:

il Java Project
¥ Java Project from Existing Ant Buildfile
» [General
> [CVs
» [Eclipse Modeling Framework
> EJB
b (= Java
> (> Java EE
> JavaScript
> JAXB
> JPA
> (= Maven
¥ (= Plug-in Development

@ [exi > R

(https://harinivasganapathy.files.wordpress.com/2015/09/plugin_project-selection-
window.png)
5. When the Plugin-in project page is displayed enter a project name, then click Next.

6. Complete the Content Page as per the below information and Click ‘Finish’

Plug-in ID : Plugin ID is to help RIT differentiate among other plugins created by users.
Plug-in Version: Plugins can also have incremental features & bug fixes and each can have a
version.

Plug-in Name: A short user friendly name that describes the Function’s purpose.

Plug-in Vendor: Name of the organization or department within organization that owns the plug-
in.

Plug-in Options: Disable both options.

Rich Client

Application: Select “No’ for this options.

https://harinivasganapathy.files.wordpress.com/2015/09/project_selection.png
https://harinivasganapathy.files.wordpress.com/2015/09/plugin_project-selection-window.png

Content) ='L.IJ)

Enter the data required to generate the plug-in. i /

Properties

ID: com.orgname.deptname.functionName

Version: 1.0.0.qualifier

Name: FunctionName

Vendor: ORGNAME ™
Execution Environment: JavaSE-1.6 < Environments...
Options

Generate an activator, a Java class that controls the plug-in's life cycle
Activator:
This plug-in will make contributions to the Ul
Enable API analysis
Rich Client Application

Would you like to create a 3.x rich client application? Yes * No

(https://harinivasganapathy.files.wordpress.com/2015/09/plugin_prop_page.png)

Eclipse opens up the Manifest File associated with the Plug-in development.

£ Puckage Exsiom £ B wwcoMive G commtwoasit! & comorgnamecest K Booksam & wmogmmege B 7 O

oBx®

L vase 18 *ad

rvrvam Capargancies Surtime | Extonsions Dxteeson Boints. ik MANIFESTAS | buld soertes

(https://harinivasganapathy.files.wordpress.com/2015/09/manifest_file.png)

Step 3: Setting up the dependencies to RIT

Since we are developing an plug-in that will be used in RIT Environment, We have to let Eclipse
know that our plug-ins Target environment is RIT. So that all libraries needed for extending RIT is
available during plugin development. This is done by adding below RIT plug-ins as Target
Platform in Preferences.

1. Go to Window > Preferences > Plug-in Development > Target Platform

https://harinivasganapathy.files.wordpress.com/2015/09/plugin_prop_page.png
https://harinivasganapathy.files.wordpress.com/2015/09/manifest_file.png

Target Platform v -
¥ General
» Ant Add, edit and remove target definitions. The active target definition will be
used as the target platform which workspace plug-ins will be compiled and |
tested against. New definitions are stored locally, but they can be moved to a
project in the workspace and shared with others.

¥ Data Management

» Help

¥ Install{Update

¥ Java Target definitions:

. j::: E‘Emimm? © Running Platform (Active) |

¥ JavaScript

» Maven

> Mylyn

¥ Plug-in Development
API Baselines

Add...

API Errors{Warnings
API Use Scans
Compilers i
Editors
OSGi Frameworks
» Remote Systems
¥ Run/Debug
b Server
> Team
Terminal
Validation 1
»Web
¥ Web Services
XML

Locations:

Restore Defaults Apply

0, cancel | (TSN

(https://harinivasganapathy.files.wordpress.com/2015/09/target_platform_page_1.png)

2. Click Add to an Target Definition to let eclipse know that the plug-in we are developing is for
RIT.

3. In the following Target Definition Dialog, select “Nothing: Start with an empty target Definition”

and Click “Next >”

Target Definition :_J’)
Create a new target definition. ’u'

Initialize the target definition with:
* Nothing: Start with an empty target definition
Default: Default target for the running platform
Current Target: Copy settings from the current target platform

Template: Base RCP (Binary Only)

@ Next > Cancel

(https://harinivasganapathy.files.wordpress.com/2015/09/target_definition.png)
4. In the displayed Target Content page Give a meaningful name like RIT to signify the Target
definition is related to RIT environment and Click Add to proceed.

Target Content =J }
Edit the name, description, and plug-ins contained in a target. (\;'
Name: RIT

Content Environment Arguments Implicit Dependencies

The following list of locations will be used to collect plug-ins for this target
definition.

Add...

Show location content

)] < Back cancel Finish

(https://harinivasganapathy.files.wordpress.com/2015/09/targetcontent.png)

https://harinivasganapathy.files.wordpress.com/2015/09/target_platform_page_1.png
https://harinivasganapathy.files.wordpress.com/2015/09/target_definition.png
https://harinivasganapathy.files.wordpress.com/2015/09/targetcontent.png

5. In the displayed Add Content page select Directory and click Next > to proceed.
Add Content
| Directory
=l Installation

<) Features
rﬂ Software Site

A directory in the local file system. The plug-ins found in the directory will be added to the
target definition.

_?' Next > Cancel

(https://harinivasganapathy.files.wordpress.com/2015/09/add-content.png)
6. In the Add Directory page click Browse and navigate to the IBM® Rational® Integration
Tester installation folder (C:\Program Files\IBM\IBMIMShared \ Plugins, by default) and click

Next >.

Add Directory

Location: C:\Program Files\IBM\IBMIMShared\Plugins N

Browse... Variables...

?) < Back Next > Cancel Finish

(https://harinivasganapathy.files.wordpress.com/2015/09/add-directory.png)

7. The Target Content page will now show the location we added and plugin available in the
location. Click Finish to Close this page.

Target Content =.J ;

Edit the name, description, and plug-ins contained in a target. ‘a'

Name: RIT

Content Environment Arguments Implicit Dependencies

The following list of locations will be used to collect plug-ins for this target
definition.

»> C:\Program Files\|IBM\IBMIMShared\Plugins Add...

Show location content

? < Back Cancel Finish

https://harinivasganapathy.files.wordpress.com/2015/09/add-content.png
https://harinivasganapathy.files.wordpress.com/2015/09/add-directory.png
https://harinivasganapathy.files.wordpress.com/2015/09/target_content_loc.png

Target Content g

Edit the name, description, and plug-ins contained in a target. '.-;}
Name: RIT
Locations| Content! g | implicit D

The plug-ins selected below will be included in this target definition.
type filter text
V| 4= ca.odell.glazedlists
¥) 4 com fastenamljackson.core jackson-annctations (2.2
7] 4= com.fasterml jackson.core jackson-core
7] 4= com.fastencmljackson.corejackson-databind (2.2.2 S
¥ 4= com.ghc.a3 (185102 Deselect All
7] 4= com.ghc.a3 105 .
¥] 9= com.ghc.a3 (1 2 217_1505
¥| 9= com.ghc.cb2oml

¥ 4= com.ghc.ch2xml (156 1 Manage using:
7] 4= com.ghc.cb2xml 4 4 @ Plug-ins

7] 9= com.ghc.chips (1.851.0.v20131001_1503 Features

7] 9= com.ghc.chips (1 1

7] 4= com.ghc.chips 1. 271141 Show:

7] 4= com.ghc.cmjira (1851 131023 1] Plug-ins

| = com.ghe.cmjira (1360 5010917 7] Source bundles
4| 4= com.ghc.cmjira 1205_11

7] 4= com.ghc.cm.oslc Group by:

V] 4= com.ghc.cm.oslc (1 40328 12 «| [MNone =

891 of 891 selected

8. All of the plug-ins in the Rational Integration Tester folder is read and listed in the Plug-ins tab
of the Target Platform preferences.
1. com.ghc.*
2. com.greenhat.*
3. com.ibm.greenhat.”
4. com.ibm.rational.rit.*

Target Platform ~Dvw
Code Resommenders ~
e ecammenders Add, edit and remave target definitions. The active target definition will be used as the target pletform which workspece
plu piled and tested against. New definitions are stored locally, but they can be meved to a project in the
g ed with others,

Ci\Pragram Files\BMBMIMSharedplugins - C:\Program Fles\ BMBMIMShared\plugins 851 plug-ins avaitable

Restore Defaults | | Apply

3
g2

(https://harinivasganapathy.files.wordpress.com/2015/09/preference_target_platform.png)
9. Click OK to close the Preferences dialog.

Step 4: Setting the dependency in the manifest

1. From the Project explorer > double click META-INF > MANIFEST.MF

% Dependencies OB
Required Plug-ins 13 Imported Packages
Specify the list of plug-ins required for the operation of this Specity packages on which this plug-in depends without
plug-in. axplicitly identifying their originating plug-in.
Agid.. Add...
tal: 0

a

Autemated Management of Dependencies 1% * Dependency Analysis

Qverview Dependencies Runtime | Extensions | Extension Points | Build MANIFEST.MF build,properties

https://harinivasganapathy.files.wordpress.com/2015/09/target_content_loc.png
https://harinivasganapathy.files.wordpress.com/2015/09/preference_target_platform.png
https://harinivasganapathy.files.wordpress.com/2015/09/manifest_dependencies.png

(https://harinivasganapathy.files.wordpress.com/2015/09/manifest_dependencies.png)

2. In the opened editor select the Dependencies tab and click Add next to Imported Packages.

Exported Packages:

£ _dbws (2.6.0)

{41 ch.qgos.logback.classic (1.0.7)

4 ch.qos.logback.classic.boolex (1.0.7)

4 ch.gos.logback.classic.db (1.0.7)

1 ch.qos.logback.classic.db.names (1.0.7)
1 ch.qos.logback.classic.encoder (1.0.7)

4 ch.gos.logback.classic filter (1.0.7)
1_1,1ch.qos.logback.c\assic,galfer (1.0.7)

1 ch.qos.logback.classic.helpers (1.0.7)

1 ch.qos.logback.classic.html (1.0.7)

{#} ch.gos.logback.classic.jmx (1.0.7)
ﬂ;rch.qos.logback.c\assic.joran (1.0.7)

1 ch.qos.logback.classic.joran.action (1.0.7)
£ ch.qos.logback.classic.jul (1.0.7)

{1 ch.gos.logback.classic.logdj (1.0.7)

ﬂ;r ch.qos.logback.classic.net (1.0.7)

1 ch.gos.logback.classic.pattern (1.0.7)

¥} ch.qos.logback.classic.pattern.calor (1.0.7)
{# ch.qos.logback.classic.selector (1.0.7)

1~k mne lnahack rlaceinc ealantar carlat (1 0 7Y

Show non-exported packages

('7 Cancel

(https://harinivasganapathy.files.wordpress.com/2015/09/exported-packages.png)
3. In the displayed The Package Selection dialog filter using *.expressions wildcard and select
com.ghc.ghTester.expressions and click Ok.

(https://harinivasganapathy.files.wordpress.com/2015/09/after_target_addition.png)

Exported Packages:

* expressions

£ com.ghc.ghTester.expressions

el com.ibm.dfdlinternal expressions

+ com.ibm.dfdlvalidation.expressions

1 org.eclipse.core.expressions

1 org.eclipse.core.internal.expressions

1 org.eclipse.core.internal.expressions.propertytester
1 org.eclipse.core.internal expressions.util

H org.eclipse.debug.internal.ui.actions.expressions
HH org.eclipse.emf.ecoretools.diagram.expressions
1 org.eclipse.ocl.expressions

1 org.eclipse.ocl.expressions.impl

1 org.eclipse.ocl.expressions.operations

1 org.eclipse.ocl.expressions.util

org.eclipse.ui.internal expressions

4 L1 2

[7] Show nen-exported packages

3 Dependencies Ot %@
Required Plug-ins |3, Imported Packages
Specify the st of plug-ins required for the opesation of this plug-in. Specify packages on which this plug-in depends without explicitly

identifying their originating plug-in.

Add...

& com.ghc.ghTester. expressians Add..

Total: 0

https://harinivasganapathy.files.wordpress.com/2015/09/manifest_dependencies.png
https://harinivasganapathy.files.wordpress.com/2015/09/exported-packages.png
https://harinivasganapathy.files.wordpress.com/2015/09/after_target_addition.png
https://harinivasganapathy.files.wordpress.com/2015/09/gh_target_adding.png

(https://harinivasganapathy.files.wordpress.com/2015/09/gh_target_adding.png)
4. Save the Manifest file

Ok we have got all our initial setup ready. This concludes our first part of the journey together.
Follow me into the next part of the trail. On our way we’ll understand the foundational design of
Function Class and implementation details of our Custom Function.

Continue to Part 2
(https://harinivasganapathy.wordpress.com/2015/09/10/demy
stifying-rit-custom-function-part-2-putting-the-gears-
together/)

Happy Reading!

https://harinivasganapathy.files.wordpress.com/2015/09/gh_target_adding.png
https://harinivasganapathy.wordpress.com/2015/09/10/demystifying-rit-custom-function-part-2-putting-the-gears-together/
https://wordpress.com/?ref=footer_blog

